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I
1. Introduction

1.1 Background

This is the final report for the Phase II SBIR Contract No. DACA72-87-C-0015,
"Spatial Data Structures for Robotic Vehicle Route Planning" (ADS Project Number
3185). It describes the work completed during Phase II, and discusses the directions
for future research.

The goal of this project is to investigate techniques and tradeoffs for representing
digital terrain information in a computer environment. That goal will be realized in
an intelligent Spatial Data Structure Development System (SDSDS) intended for use
by Terrain Analysis applications programmers with little or no knowledge of specific
spatial representations.

The representation of spatial information is a key element in any solution to a
terrain analysis challenge such as route planning. In as much as the same spatial
information can be represented in many different data structures, the choice of repre-
sentation will often determine both the ease with which a solution can be found and
implemented and the (time and space) efficiency of that solution.

Terrain analysts, however, are not experts in the computational complexity of
spatial data structures. Therefore, the problem is to design and build an infrastruc-
ture to support terrain analysis applications which "hides" the details of representa-
tions and manipulations of those representations from the analyst.

A system capable of serving the analyst this way will perform many varieties
of operations on the spatial data. For example, a robotic vehicle route planning
application should focus attention on a number of specific issues:

I * processing incomplete or multiple resolution information

9 providing incremental access (scrolling) and updating of spatial information as
the route develops

* time-space tradeoffs

The work performed by this contract addresses the issue of estimating and eval-
uating the complexity of representations and algorithms.

1.2 Objectives

The long-term goal of this research is to build a Spatial Data Structure Devel-
opment System (SDSDS) to serve as the infrastructure base for Terrain Analysis
applications. Towards this end, Phase II has addressed the following issues:

e implementation of common terrain representations,

* implementation of common spatial operations,

e design of a methodology for evaluating the performance of spatial operations,
I 1-1
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I
* evaluation of the implemented representations and operations,

* initial design of testbed on which the SDSDS would be built.

1.3 Overview of the Technical Approach

Our approach is to view the spatial processing portion of a terrain analysis ap-
plication as a separable layer of manipulations and computations over spatial repre-
sentations. For example, the semantic rule "Company HQ must be within .5 miles of
a major road" can be interpreted as having (at least) two distinct levels of context -

the application level represents what is known about application objects - HQ's and
major roads; the spatial data level is concerned with the representation of point-like
objects, linear networks and the analysis of their spatial relationships.

Another aspect of our approach, which is hinted at above, is to design and im-
plement object-oriented representations. Since objects can point to other objects, the
above example would have an instance of a road object pointing to an instance of a
linear structure object (its geometric description). The linear structure object might
have several representations (e.g. k-d tree, edge quad-tree) each at multiple resolu-
tions. The value of this extensive structuring is to hide from the user the details of
representation and to permit the infrastructure itself to decide which representations
will be most efficient or effective for a given process request.

The third aspect of our approach is to select efficient methods and representations
for an operation based on both analytic and empirical models of the algorithmic
complexity. Since these models are available as part of the infrastructure, the SDSDS
system will be able to intelligently predict performance of algorithmic sequences and
thereby optimize the application (within the accuracy of the prediction models). The
development of a methodology for generating these models has been a major focus of
the Phase II effort.

U 1.4 Focus of Study and Structure of the Final Report

The technical approach taken in Phase II is outlined in Chapter 2. This chapter
states the problem, defines key concepts, and describes the research tasks undertaken.
Chapter 3 presents a description of the spatial representations and operations chosen
for study. The algorithms for each spatial operation are described in detail. The main
technical results of the Phase II research are presented in Chapter 4. This chapter
contains descriptions of the studies in algorithm complexity, data complexity, and
performance modeling. The analysis of this chapter threads together the various
studies and draws conclusions based on their results. Chapter 5, the final technical
chapter, presents an initial design of a future spatial reasoning testbed based on the
results of Chapter 3 and Chapter 4. The conclusions of Chapter 6 summarize the
Phase II effort and make recommendations for future research.

1
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* 2. Technical Approach

2.1 Statement of the Problem

There are numerous ways of representing terrain data in current computer sys-
tems, such as arrays, records, and files. Each of these represents a particular point
in the tradeoff between execution time and memory space. Automatic route plan-
ning poses particularly strong demands on any such representation because it requires
large amounts of space to contain high resolution maps of large areas of the earth
as well a- requiring fast response timet. or interactive or autonomous use. There is
currently no satisfactory data structure that meets those demands.

The tradeoff between time and space is reflected in the levels of memory storage
in modern computer systems. Generally the faster the access to the unit of memory,
the more limited its storage capabilities. Traditionally, this range has gone from
registers through main memory through secondary (disk) memory to off-line (tape)
memory. For this application, the space requirements are such that main memory
by itself is insufficient. Similarly, the time demands remove the pos ibility of using
off-line storage. Thus some form of secondary storage will be ne-essary. There are
several ways that secondary storage can be utilized to augment main memory such
as virtual memory, files, or databases. These again involve tradeoffs between time
and space and also interact with the particular form and use of the data.

An efficient, on-line data structure that supports both effective encoding of data
(to meet the space requirements) and decoding of data (for the time requirements)
will have a significant payoff. Interactive (man-in-the-loop) systems require high
bandwidth data flow due to the large amount of graphics necessary to communicate
with the user. Even more stringent are the real-time requirements of autonomous
robotics systems. Both applications would benefit from success in this area.

Terrain data has many uses besides automatic route planning. Tbese include
navigation, perceptual prediction, aerial photograph and satellite imagery analysis,
land management, and cartography. Many of these have similar time and space re-
quirements and so could benefit from an effective method of data representation. Infaddition, there are numerous applications that need to manipulate large amounts of
data quickly (i.e., are in similar points in the time/space domain). These include com-
puter graphics, signal understanding, modeling, seismic interpretation, and numerous
civilian applications.

The long range goals of this project are to develop:

1. an object-oriented representation for ,"-e storage of terrain data

* supported by efficient spatial data structures and algorithms

I * svpporting data provided by sources with different resolutions

* capable of representing objects at multiple resolutions

* and which can Le incrementally updated efficiently

* 2-1
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2. a hardware and software testbed supporting the object-ori"rted representation
with tools to manipulate the data

3. an infrastructure layer on the testbed which permits a researcher or developer
to rapidly prototype and evaluate systems which reason about terrain data

4. a methodology which supports the automated optimization of spatial opera-
tions.

The primary emphasis is on automatic route planning, but the research draws on and
considers any applicable knowledge of terrain analysis and corresponding research
i7-ues determined by and identified for other applications.

The object-oriented representation permits the division of raw terrain data (ele-
vations plus thematic overlays) into a network of schemata which are represented as
objects. The schemata will be constructed so as to represent entities that are seman-
tically significant (e.g., spatial structures for roads, fields, rivers) and thus permit
efficient access to relevant data. While the technique is suitable for many terrain
analysis applications, emphasis will be on uses of terrain suited for route planning.

Schemata are made up of three parts: the geometry of the terrain feature loca-
tion, non-geometric properties, and relations to other schemata. The route planning
domain has the advantage that it is not strictly three-dimensional. That is, no point
on the earth's surface can have more than one elevation. Thus, an augmented two-
dimensional (21D) representation is sufficient (where one considers the data from a
downward-looking orthographic viewpoint) to capture the topology of the scene. Ob-
ject geometry can then be represented naturally as points, two-dimensional curves,
or regions along with the elevations at selected feature points. There are numerous
ways of encoding point, curve, and region information; we choose a representative set
for consideration.

Geometry is further characterized by two related properties: faithfulness and
resolution. Faithfulness refers to the ability to decode the raw data from the en-
coded form. The resolution of the data indicates the level of detail at which it is
represented. These properties have a strong effect on the space/time tradeoff since
high resolution, highly faithful representations require considerable space (and time
to process). Multi-resolution schemes are important in the route planning application
so that the space/time tradeoff can be explicitly controlled. At each resolution, one
would lke the ability to manipulate faithfulness so that it is adequate to the task but
not wasteful of storage.

The properties of schemata are either facts supplied with the raw data (e.g.,
surface material) or information derived during the encoding phase (e.g., maximum
curvature). Thus . .. xample schema for a road might include its length, width,
average elevatio.,' .. straight-line approximation to the center line of the road (at
several resolutions/ whi h was augmented with the elevations at those points.

The final compcr ' )f the schemata is their relationships to other schemata.
These are essental!y icLaexing shortcuts which tradeoff additional space for more
efficient processing capability. For example, if the relationship "adjacent-to" is pre-
computed, pointers representing adjacency can be stored in the schemata. Thus,

I 2-2
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I
we trade off additional storage for reduction of runtime computation to determine
adjacency. In the route planning application useful relations include adjacency, con-
tainment, and overlap. The resolution hierarchy is also a type of relation. In the
example above, a particular road can be "adjacent" to several other schemata. It
might also "contain" intersections.

The schemata, as linked by their relationships, form a semantic network. Such
networks have a long history in artificial intelligence and many graph search algo-
rithms have been developed that can effectively utilize their structure.

Clearly, the choice of schemata should be tied to the particular application. An
object-oriented representation has the strong advantage that the connection can be
made at an explicit, semantic level. This will lead to a more flexible, manageable
system, useful across a range of different applications.

2.2 Key Concepts

I The following are concepts central to the Phase II study. These concepts we be-
come building blocks with which we will define a testbed environment which supports
a terrain application developer. One of the main tasks of such a testbed is to take
high level descriptions of terrain operations and execute them in the most efficient
way given the available algorithms and data structures. This optimization will re-
quire the ability to model and predict the performance of algorithms. The following
concepts provide the foundation for this modeling.

U 2.2.1 Algorithm Complexity

Algorithm complexity refers to the analytic complexity of an algorithm [Bass 78].
This is the standard algorithm analysis which describes how an algorithm will behave
as its input changes. (usually increasing size). This is often expressed in order-form,
e.g. O(N log N) means that the algorithmic time complexity for large values of the

inps Length N, varies as N log N.

fl 2.2.2 Representation Complexity

Representation complexity is tied to the notion of algorithm complexity. The
feature or features of a representation on which the algorithm complexity is based
determine the representation complexity of the input to the algorithm. So, for exam-
ple, if an algorithm's complexity is tied to the number of edges in its polygonal input,
then the number of edges in a given polygon object determines its representation

complexity.
Notice that an object with multiple representations can be viewed as having

* different representation complexities depending on the input assumptions of the al-
gorithm using it as input.

I 2-3
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2.2.3 Inherent Data Complexity

Whereas representation complexity describes the complexity of some data in a
given representation, it would be simple to have a measure of data complexity which
is independent of represeptation. The inherent data complezity of an object is depen-
dent on properties of that object which are invariant under transformations between
representations. A goal of this research is to define such a complexity measure and
test its usefulness as a complexity measure. To be a good measure of complexity it
must:

Ibe a good predictor of algorithm performance,

ml . be computable from any representation,

* be independent of representation,

Sbe quickly computed.

Algorithm performance is usually specified in terms of representation complexity,
hence if the inherent complexity measure is closely correlated with various represen-
tation complexities it will likely be a good predictor of algorithm performance.

f2.2.4 Performance Model

The knowledge of the representation complexity of the input to an algorithm as
well as the algorithm's analytic complexity, is sufficient to predict the relative costs
of running a given algorithm on a set of inputs. What cannot be gleaned from this
knowledge is the relative speeds of different algorithms on different representations
of the same input datasets. We cannot in practice, for example, predict whether
polygon intersection or RLE intersection will be faster for a given dataset.

To be able to compare different algorithms we must have a performance model
of that algorithm. This model is based on the analytic complexity but takes into
account the overhead involved in running a particular algorithm. For example if
the analytic complexity of an algorithm is O(n 2), the performance model might be
a function like: O.01n 2 + 3.23n + 47. From this performance model the expected
run time of an algorithm can be predicted, once the representation complexity of the
input is known.

A performance model based on representation complexity is only useful if the
representation complexity of the input is known. A task of the SDSDS will be to

*predict the performance of many algorithms on different representations of the same
data, and choose an optimal approach. To do this using representation-based per-
formance models would mean that the object would have to be converted to every
representation considered. This would be prohibitively expensive.

The preferred solution, if possible, is to have an inherent data complexity measure
for the data, upon which performance models are based. Then the inherent complexity
of the input allows the relative expected performances of each algorithm applied to
that input to be computed efficiently.
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*2.3 Structure of the Solution

The goal of this research is to be able to predict the performance of algorithms
on a given data set without using the traditional algorithm and representation com-
plexity. The reason that this is desirable is that in order to compute representation
complexity, the dataset must be instantiated in that representation. We want to be
able to evaluate the cost of possible processing paths without actually doing any of
the processing.

For the inherent data complexity measure to be useful, the computation cf theI measure must be more efficient to compute than to instantiate all possible represen-
tations and compute their complexities. If there are many representations to choose
from it is likely that a simple image measure will be less expensive to compute.

The above goals suggest a research approach:

e Select Spatial Representations

o analyze representation complexity

e *Select Spatial Operations

o analyze algorithmic complexity

* Define an Inherent Data Complexity Measure

* Select Test Data

o choose real data

o chose data of varying complexity

o compute inherent data complexity of data

* o compute representation complexity of data

* Evaluate Complexity Measure

o compare inherentdatacomplexity tohumanexpectations

o compare inherent data complexity with representation complexity

e Evaluate Algorithms

o generate performance model based on representation complexity

I generate performance model based on inherent data complexity

o compare performance models

This analysis will yield the answers to the following questions:

* Have we defined a good measure of inherent complexity?

* How are data and representation complexity related?

I 2-5
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*Is data complexity a good predictor of algorithm performance?

If the answer to the above questions is "yes" then we have a methodology for ana-
lyzing algorithms and predicting performance at run-tiiue. This ability will provide
a foundation for the SDSDS testbed.

ii
i
I
i
i

I
I

I
I .
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3. Data Structure and Algorithm Descriptions

3.1 Selection Criteria for Data Structures and Algorithms

A major objective of the Phase II effort of this project has been to study the
relative efficiency of a set of methods when implemented using different represen-
tations. The approach to this objective is to determine the theoretical efficiency of
each method/representation pair, based upon assumptions about the spatial data,
and then to measure actual performance based upon real data, comparing the actual
and theoretical results. The sets of chosen methods allow comparison of the use of
different representations for a single method. The result of such a study is to de-
termine which representation is best for each step of a process. This determination
may show that the best design for the entire process is to use a single representation
across all steps, accepting some inefficiency in some steps to gain efficiency in other
steps; or, alternatively, to make a representation change between some steps; or even
to carry along multiple representations of the data throughout the processing so that
each step can use the representation most suited to itself. This approach supports
the design of an object oriented system, since any object can include more than one
representation of the data.

Out of a vast array of possible methods and representations a subset the methods
was chosen to cover a wide mix of methods; the subset of representations consists
of those representations most commonly used for regions. We have restricted our
attention initial study was limited to regions because region operations tend to be
more complex than point and curvilinear feature operations; furthermore, many point
and curvilinear feature operations can be derived as special cases of region operations.

For this Phase II effort, the following methods were chosen:

1. Intersection

I2. Union

3. Negation

4. Enveloping (region growing)

The following representations for regions were chosen:

1. Grid Based (Binary)

*2. Run Length Encoding

3. Polygons with straight line edges

Each method/representation pair is studied by:

*1. Performing a theoretical efficiency analysis of the resulting algorithm

2. Implementing the algorithm in a SUN-III/Commonlisp environment
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To illustrate the logical operations we show two region datasets (Figure 3-1 and
Figure 3-2). The intersection of these datasets is shown in Figure 3-3. The union
is shown in Figure 3-4. Figure 3-5 shows the negation of dataset 7A. Enveloping is
best illustrated by an example of polygon enveloping. Figure 3-6 shows a portion of
a dataset which has been enveloped. The inner contours correspond to the original
representation and the outer contours correspond to the envelope. For this study,
we treat enveloping as region-growing. That is, the envelope of a region contains the
new boundary of the region as well as the region itself. Another use of enveloping
operations is to construct a region corresponding some distance in either direction
from the original region boundary. This type of enveloping can be computed directly
for polygons or by using a combination of region growing and intersection operations
for other representations.

3.2 Grid Encoded Image Operations

The most common representation of region data is grid format. This represen-
tation maps regions onto a discrete grid of cells. The value of a grid cell determines
how it is to be interpreted. In the simplest case (and the one we implement here) a
binary giid is used. Each grid cell can take on the value 1 or 0. By convention, grid
cells labeled 1 indicates that the region being represented covers that cell; 0 means it
does not.

A slightly more complex grid representation is a connected-components image.
In this representation each disjoint connected region in the grid is assigned a unique
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Figure 3-5: Negation (Inverse) of Dataset 7A
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Figure 3-6: Detail of Polygon Envelope
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IFigure 3-7: Connected-Components Grid Representation
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label (as opposed to simply a 1) (see Figure 3-7). This representation encodes more
information than the binary grid because disjoint connected regions can be easily
determined.

While being very simple, grid representations have drawbacks as region repre-
sentations. First, they are not very space efficient. Even in the case of a binary
grid, a full grid is used even if only a few cells are non-zero. We will see in future
sections how run-length encoding and polygonal representations exploit properties of
regions to achieve a more efficient use of space. Secondly the representation does not
explicitly represent objects as spatial entities. This makes the performance of certain
spatial operations more difficult and time-consuming.

Many terrain databases use a grid representation, and hence the ability to per-
form spatial operations on grids is important. In fact grid representations are so com-
mon throughout Computer Science, many computers have special-purpose hardware
for performing grid-based operations. In developing and testing grid-based algorithms
we assume that no special-purpose hardware is available; this provides a fair basis
of comparison with the other representations. However, in an eventual system, the
distribution of algorithms for specific representations across special architectures will

* permit automated selection of the most efficient implementation.

3.2.1 Union and Intersection

Union and intersection operations for grids are easily defined. Assuming that the
grids have the same dimensions, the corresponding pixels in each grid are examined.f Intersection corresponds to a logical-AND of the corresponding pixels and union cor-
responds to a logical-OR. That is, a new grid is created and its grid values are the
result of either an AND or an OR operation on the corresponding grid cells of the
input grids.

3.2.2 Inverse

The inverse of a grid is also straightforward to define. A new grid is created with
grid cells whose values are the logical-NOT of the corresponding input cells. That is,
if the input grid has a 1 in cell (x, y) then the inverse grid has a 0 in cell (x, y).

3.2.3 Envelope

The envelope of grid encoded regions is calculated by constructing a square mask
of width and height 2R + 1 where R is the enveloping radius. This mask is moved
over the grid and when it is centered on a non-zero cell all cells covered by the mask
are set to 1. This is also called, a "grow" operator. The inverse operator, turning I's
to O's is called "shark"

3.3 Run Length Encoded Images

I A run length encoded image (RLE) is a simple representation of an arbitrary
two dimensional shape. Run length encoded images are best used to represent shapes
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U Figure 3-8: RLE Representation

that are defined with respect to a grid and are somewhat homogeneous. Typically
the underlying grid corresponds to the coordinate system for an image.

Run length encoded images, RLEs, are represented in terms of intervals of con-
nected feature pixels. The intervals are aligned with the row axis of the underlying
grid (Figure 3-8). Each interval is called a run. The set of runs that all fall on one
row is called a run-list. The complete RLE is a list of run-lists. Run-lists are sorted
by increasing row index, runs are sorted by increasing column index. By definition:
runs on the same row can not overlap.

I this: Logically, the internal representation of a run length encoded image looks like

(run-listi run-list2 run-list3 ... run-listn)

I The actual RLE structure includes pointers to both ends of the each run list and
pointers to the first and last run-lists. A run-list is represented like this:

I row on ((start. stop) (start. stop) ... )

Runs (i.e., a cons (start. stop)) are sorted in increasing order, i.e., left to right and
run-lists (i.e., (row (start . stop) ... )) are sorted from the bottom to the top of the

* image.

I
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fl 3.3.1 Union and Intersection

The algorithms for run length encoded image union and intersection are similar
in structure; one would expect that most of the other set operations (e.g., Exclusive
Or, Difference) would also have the following structure:

* Test for and handle special cases: zero or one RLE argument, none of the RLE
arguments overlap.

* Find the union or intersection one row at a time: find all of the run-lists on
each row that is overlapped by any of the RLEs and then find the union or
intersection of those run-lists.

* Test and handle special cases: only one run-list on a row, none of the run-lists
on a row overlap.

e Use asimpleleft to rightsweepalgorithmto find the union orintersection of
all of the runs on a single row.

The remaining sections focus on the last step, i.e., finding the union or inter-
section of a set of run-lists when there is more than one overlapping run-list in the
set.

3.3.1.1 Union (rle-or rlel rle2 ... ren)

This algorithm scans through all of the input run-lists simultaneously moving
from left to right. The algorithm is driven by a loop that finds the start column and
then the stop column for each run in the output run-list. The loop terminates when
all of the input run-lists are empty.

(run-list-OR ris)

Find the union of the sequence of run-lists ris.

1. If all of the run-lists are empty then finish. If only one non empty run-list
remains then append a copy of it to the output run-list and finish.

2. Initialize start and stop to the leftmost first run in rls.

3. Remove runs that are contained within start,stop

4. If the 1st run in any remaining run-list overlaps start,stop then update stop,
remove the run, and return to the previous step.

I 5. Add a new run, from start to stop, to the output run-list.

Sf6. Return to step 1.

* 3-8
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3.3.1.2 Intersection (rle-and rlel rle2 ... rlen)

This algorithm scans through all of the input run-lists simultaneously moving
from left to right. The algorithm is driven by a loop that finds the start column and
then the stop column for each run in the output run-list. The loop terminates as soon
as it has scanned past the end of any one of the input run-lists.

* (run-list-AND ris)

Find the intersection of the sequence of run-lists rs.

1. If any of the run-lists is empty then finish.

I 2. Set start to be the start column of the rightmost first run in rls.

3. Remove each run that is to the left of start, i.e., whose stop column is less than
start. If any of the run-lists are empty then finish.

4. If all of the the 1st runs in ris overlap then ad i a new run to the output run-list.
In terms of the first run in each run-list: the new run starts at the rightmost
start column and ends at the leftmost stop column.

* 5. Remove the run with the leftmost stop column.

6. Return to 1.

I Finding the logical inverse of a run length encoded image is very straightforward:
each stop column in the input RLE becomes a start column in the output RLE and
each start column in the input RLE becomes a stop column in the output RLE. We
create the inverse one run-list at a time:

(nie-not rle)

1 1. Initialize start to most-negative-fixnum.

2. If the run-list is empty then set stop to most-positive-fixnum otherwise set stop
* to the start column of the first run in the run-list.

3. Output a new run from start to stop.

I 4. Set start to the stop column of the first run in the run-list

* 5. Remove the first run in the run-list.

6. Return to step 2.

I
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fl 3.3.2 Envelope

(rle-envelope rle radius)

Specifying an algorithm for creating the envelope for a run length encoded image
turns out to be straightforward but implementing it is somewhat tricky. We find the
envelope one run at a time. The envelope of each run is a rectangle with semicircular
ends, to find the complete envelope we find the union of the envelopes for each run in
the input RLE. It is not necessary to find the complete envelope for every run, only
the portions of each run that are not overlapped by a run on an adjacent row need
to be processed.

The implementation of the algorithm is based on two complex operations: run
decomposition and run merging. The run decomposition operation visits each run in
the input RLE and determines what portions of that run to create a partial envelope
for. Each partial run envelope is represented as a new RLE. The run merging oper-
ation destructively finds the union of each run in the partial envelope RLE and the
output RLE.

3.3.2.1 Run Decomposition

The envelope for an isolated run is a rectangle with a semicircle at each end. The
ends are circular arcs with radius equal to the radius of the envelope. The envelope
for a run whose length is greater then the radius of the envelope can be represented
by a small table.

The only parts of an input run that contribute to the output RLE are the run
itself and the portions of the run that are not bordered by an overlapping run on
an adjacent row. This is because the adjacent run will always contribute a superset
of what its neighbor will. The run decomposition operation visits each run and

* decomposes it into a set of intervals that are not overlapped by an adjacent run
above and another set of intervals that are not overlapped by adjacent runs below.
For each interval that does not include either end of the input run we merge N
interval length runs with the output RLE. N equals the radius of the envelope, the
output runs are stacked vertically above or below the input run. If the interval does
include one or both endpoints of the input run then the length of each output run is
tapered according to the radius of the envelope. The length of each output run equals
the length of the interval extended by the corresponding portion of the semicircle.
This value can be looked up in a table like the one shown in Figure 3-9. Figure 3-10
illustrates the run decomposition algorithm.

3.3.2.2 Run Merging

The run merging operation destructively finds the union of a run and an RLE;
* the real problem is merging the run with a run-list.
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R Run Envelop RLE Envelope Table

H Figure 3-9: Envelope for an Isolated Run

I 1. First handle the easy cases: There aren't any runs on this row yet or the run
belongs at the beginning or the very end of this run-list.

i 2. Otherwise the run belongs somewhere in the middle of the run-list.

" Scan through the run-list until the start column of the run lies in between
two successive runs in the run-list.

" Check for the simple insertion case first (see Figure 3-11).

i Handle the general case. We know that the run overlaps either the first
and/or the second run in the run-list consequently it will not be necessary to
insert a new run, it is only necessary to extend the first run overlapping run.

" If run overlaps the first run then remove all of the successive runs that overlap
run and set the stop column of the first run equal to the stop column of the

i rightmost overlapped run (see Figure 3-12).

" If run overlaps the second run then remove all of the successive runs that
o,,erlap run and set the stop column of the second run equal to the stop
column of the rightmost overlapped run (see Figure 3-13).

I
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2 A run length encoded image (RLE)

3 composed of 3 runs.

I
The envelope for an RLE is equal to the
union of the envelopes for each run.

I

HThe exact portion of the complete
MR -envelope contributed by run 1

* .Conservative approximation to the
portion of the envelope contributed

__ __ __ __ __I _ __ I

I

-Portion of the envelope contributed by
run 2.

I%

-Portion of the envelope contributed by
i 'run 3.

3 Figure 3-10: Run Decomposition Example
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- -. run-list

run to insert

-I- result: splice run in between runs 1,2

I Figure 3-11: Merge Run: Simple Insertion

i 1 2 3
.- _- run-list

--run to insert

_ _ __ result: extend run 1, delete runs 2,3

Figure 3-12: Merge Run: Extend the First Run

I
I 

run-list

run to insertIresult: extend run 2, delete run 3

Figure 3-13: Merge Run: Extend the Second Run
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fl Figure 3-14: Polygon Representation

1 3.4 Polygon Encoded Image Operations

This section contains a description of the design of some of the algorithms used
with a straight line polygonal representation, as well as a description of the associated
data structures.

In this research, the basic representation used for polygons is a set of connected
straight line segments (Figure 3-14). There is a three-level hierarchy of components
from vertices to polygons.

The three levels are:

1. Vertex, a pair of coordinates, row and col.

2. Edge, a link consisting of a pair of vertices and two pointers, a next pointer
pointing to the adjoining edge in the clockwise direction and a prey pointer,
pointing to the adjoining edge in the counter-clockwise direction.

I 3. Polygon, a closed curve called the hull and a number of interior curves called
holes.

Each of these levels is represented by a Common Lisp structure:

;; ;2D-VERTEX STRUCTURE:

(defstruct (2d-vertex (:conc-name vertex-)

row

col))
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;; ;2D-EDGE STRUCTURE

(defstruct (2d-edge (:conc-name edge-))
v1 ;type: 2-D vertex

v2 ;type: 2-D vertex
next ;type: 2d-edge

prey ;type: 2d-edge
)

I
;;;2D-POLYGON STRUCTURE:

(defstruct (2d-polygon (:conc-name polygon-))
hull ;type: 2-D edge
hole-list ;list of 2-D edges, 1 per hole
)

mm 3.4.1 Union and Intersection

3.4.1.1 Convex Case

The convexity of the polygons allows us to subdivide the plane they occupy
into regions in which the intersection is easily computed [Prep 85]. To subdivide the
plane, we choose an arbitrary point P in the plane. From P we draw lines to each of
the vertices of n, and n'e. We now sort these lines by angular order around P. If P is
inside a polygon this sorting is trivially determined by the order of the vertices. If P
is outside a polygon, say at infinity, the lines can still be sorted into angular order by
walking the vertices of the polygon examining the next and previous vertices, sorting
cach triple into the correct order.

When the lines have been sorted for each polygon they can be merged into a single
ordered list. These lines now divide the plane into sections, the ordering of which
constrains the locations of possible intersections. The polygons can be thought of as
being sliced into sections by the lines. These sections are, in general, quadrilaterals,
but when P is at infinity they are trapezoids (Figure 3-15). The ordering of the lines
allows this slicing to be done in time proportional to the total number of edges.

The intersection of the two polygons in a given section is the intersection of the
slices of the polygons in that section. The individual intersections can be merged
together by a single ordered pass of the sections. If desired, extra colinear vertices,
introduced by the slicing procedure, can be removed.

3.4.1.2 Non-Convex Case

The boolean comparison of arbitrary simple polygons is more complex. While
still assuming simple polygons, we handle the comparison of sets of disjoint, possibly
concave polygons with holes. The algorithm, derived from [Weil 80], merges the

Im 3-15

I



I
individual polygons being compared into a graph representation where the boundaries
of the polygons are arcs in the graph. This graph structure has embedded in it the
output polygons of each boolean operation. Hence one application of the algorithm
is all that is needed to compute AND, OR, and NOT. Other operations useful in
computer graphics, such as clipping, can also be computed with no additional effort.

The polygon boundary representation needs to be extended to allow independent
clockwise or counter clockwise traversal of an edge. The resulting winged edge struc-
ture (Figure 3-16) has vertices vl and v2 where vi is the first vertex encountered in
a clockwise traversal of the original polygon.

This can be represented by a LISP structures as follows:

I An Edge-Side is a basic 2D-edge with the addition
of a HISTORY which is a list of regions associated

;;; with the edge. The edge-side may also have an
;;; ENTRY-POINT is T if the edge-side is the entry
;;; point of a contour.

(defstruct (edge-side (:include edge)
(:conc-name edge-))

parent
history
side

* entry-point)

;;; A WINGED-EDGE has two vertices (with a convention about their
;; usage), two lists of regions (for regions on either side of the
;; edge), and four pointers (two for each side pointing to the

;; next an previous).

;; Vi: first vertex past when traversing sidel CW

last vertex past when traversing side2 CW
V2: first CW vertex for side2

m ;;; first ccw vertex for sidel

(defstruct (winged-edge (:include edge)

(:conc-name edge-))
deleted ; t if it is a removed coincident edge - allows traversal

of original graph - will not be intersected with
anything

parent-curve
subject ; t if the edge is in the subject poly, nil if in clip

sidel ; edge-sides point to "edge-side" structures
side2)
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I
Figure 3-15: Segments defined by vertices with P at infinity.
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Figure 3-16: Winged Edge data structure.
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The structure has two sides; sidel is inside the polygon and side2 is outside. Each
of the edge sides has its own next and previous pointers to edge sides encountered
in a clockwise or counter clockwise traversal respectively. Edge sides are thought of
as facing the area they bound. Associated with each of these edge sides is a list of
regions that it faces.

The algorithm has four stages:

1. spatial analysis of input,

* 2. graph building,

3. traversal,

4. spatial analysis of output.

The first step is to establish the topological relations between the input polygons.
If any of the contours of one of the input polygons is completely contained within
the contour of another polygon then the histories of the edge sides of the contained
contour must be updated to reflect the new region these sides face.

The main component of the graph building stage is a graph-merge process which
determines intersection relationships between edges of the polygons and merges the
boundary representations into the graph structure in a way which reflects the type of
intersection. Edges in the graphs are assumed to be straight, though the algorithm
could be modified to deal witl curved edges. There are essentially three types of
intersections:

* midpoint-midpoint - Two edges cross each other. The edges are split at the
* intersection and merged into the graph (Figure 3-17).

e endpoint-midpoint - The endpoint of one edge is incident on another edge.
The intersected edge is split and the intersecting edge is added to the graph
(Figure 3-18). Additionally, all edges incident on the vertex of the intersecting
edge must be added to the graph using the endpoint-endpoint merge.

I endpoint-endpoint - The vertices of two edges coincide. The edge and all edges
incident on the intersecting vertex of that edge are merged into the graph

* (Figure 3-19).

The merge process uses information about whether the intersecting edges are
inside or outside the contour being intersected and whether the edge is entering or
leaving the contour. In endpoint-endpoint merge the spatial relationships of the
surrounding edges are used to merge the edge consistently.

An additional step is necessary to detect and properly handle coincident edges.
When an edge which has been merged into the graph is detected to be coincident
one of the two coincident edges is deleted, the pointers are updated, and the edge

*side history information of the deleted edge is incorporated into the histories of the
remaining edge sides.
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o SPLIT BOTH EDGES AT INTERSECTION

o DETERMINE IF e3 IS INSIDE OR OUTSIDE CONTOUR OF

el -e2

o DETERMINE IF e3 IS ENTERING OR EXITING

o UPDATE POINTERS

i o SIMPLE AND EFFICIENT

Figure 3-17: Midpoint-Midpoint Intersection

Iel e2I

o END POINT OF e2 LIES ON el

o SPLIT el AND MERGE e2 DOING ESSENTIALLY THE SAME
THING AS MID-MID CASE

o FOR ALL EDGES INCIDENT ON THE MERGED VERTEX,
MERGE USING END-END

i Figure 3-18: Endpoint-Midpoint Intersection

i

I

o FIND INCIDENT EDGES WITH MIN AND MAX ANGLE FROM
MERGING EDGE

o FIND THE CONTOUR COMMON TO THE MIN AND MAX EDGES

Figure 3-19: Endpoint-Endpoint Intersection
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When all edges have been merged, the graph contains all the intersection infor-

mation necessary for performing any of the set operations. Thus the graph need only
be generated once for a given pair of polygons. The set operations then resemble
queries to this structure.

Each initial contour is said to have two entry points; one for each side. The
entry points provide a starting place from which to traverse a contour. When edges
are intersected they may introduce new contours which have no entry point. Hence,
every intersection generates a new entry point. The traversal process walks along the
edges of all the contours in the new graph by starting at an entry point and following
it until it forms a closed loop. Redundant entry points formed in the merge process
are eliminated during traversal.

From the contours in the new graph the contours matching the desired boolean
operation can be selected. The appropriate contours for a given operation are deter-
mined by list of regions which they face.

I* OR -- collect contours with no history information and hence, inclose no region.

e AND -- collect contours which inclose the regions of both input polygons.

The spatial analysis of the output contours determines the spatial relationships
of these new contours. The contours are sorted into a list of disjoint polygons with
holes. The result is a generalized polygon in boundary representation.

3.4.2 Inverse

In the case of Grids and RLE's the inverse was specified with respect to the fixed
grid on which these representations are defined. This grid defines an implicit finite
universe which limits the spatial extent of the inverted representation. In the case
of a polygonal representation, no such bounding universe exists a priori. We could
assume that the inverse of a polygon has no explicit boundary; that is, it extends to
infinity. This however, is not a practical solution.

The inverse could also be defined with respect to any arbitrarily shaped polygon.
In this case, the inverse can be specified as one of the boolean set operations described
above. The result is equivalent to clipping the subject polygon with the arbitrary
universe polygon. This operation is more general than that discussed for Grids or
RLE's. To be consistent with the grid and RLE inverse operation, the universe
polygon is considered to be the polygonal boundary of the grid used as the universe
for these other representations.

A special case of polygon inversion which exists when the universe is known to
completely contain the subject polygons. In this case the universe forms the hull of the
new polygon. This hull has holes which are the hulls of all the subject polygons being
negated. Additional disjoint polygons are formed by the holes of the subject polygons.
In this case, no intersection operations are necessary, and all spatial relationships are

* already known.
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fl 3.4.3 Envelope

The following in a simple algorithm which works on both convex and non-convex
polygons. The simple algorithm ENVELOPE below makes use of the UNION oper-
ation.

1. We construct a box around each line segment of (2 * envelope radius) in width
by length of the segment.

2. We also construct a straight-line approximation of a circle using the enveloping
I radius around each vertex.

3. Union all the polygons constructed in steps 1 and 2.

The performance of the algorithm can be enhanced by using a special-purpose union
operation that is optimized for the intersection of rectangular boxes.fl More elegant enveloping algorithms follow.

3.4.3.1 Convex Case

We will assume that the enveloping algorithm is performed on a convex polygon.
The following algorithm relies on the fact that there is a one to one mapping between
vertices of the original convex polygon and those of the enveloped polygon.

The algorithm is quite simple. For each vertex of the orginal polygon, the
corresponding vertex of the enveloped (returned) polygon is determined as follows.
Let the coordinates of the present vertex be (u 2,v 2), those of the previous vertex be
(ui,vj), and those of the next vertex be (u3,v3), where "previous" and "next" are
defined with respect to a clockwise traversal of the polygonal boundary. Then, the
coordinates (u2,ve) of the corresponding vertex of the enveloped polygon are given
by (see Figure 3-20)

U 1 (u2 1+mi] -v 2 [1+m 2]-RS /I ml 2S,)
U = 1 -

2
2

1 (U2 m[1 + in] - 2 m [1 + ]- RSmoVl + ,7 - 2RS2

M1V -- 7' - M2 7n2

where

R enveloping radius

M =(v2 - vl)/(u2 - UI),
M2 -- (V3 - V2)/(U3 - U2),

S1  (V2 - Vi)/Iv 2 - v1,,

S2  (V3 - V2)/IV - 21.

* Only a single traversal of the polygon is required to compute these quantities.
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Grid

I RLE_._
I -Polygon V/

I

I Table 3-1: Update Methods

3.4.3.2 Non-Convex Case

In the case on non-convex polygons, enveloping becomes more complicated. Fol-
lowing the technique described above can lead to non-simple polygons; that is, poly-
gons with overlapping edges (Figure 3-21).

An algorithm for the non-convex case proceeds in two stages. The first stage
performs the algorithm described for convex polygons. The second phase transforms
potentially non-simple polygons into simple ones. This second phase conceptually cor-
responds to performing a union of the polygon with itself. This makes the algorithm
more complex and computationally expensive.

3.5 Update Algorithms

Given data in a representation R and a method M there are possibly many ways
to compute M. For example an algorithm MR which uses representation R might

be used. This is straightforward, but it may be the case that MR is computationally
expensive. There may be some faster algorithm Mx which implements the method
but relies on having data in the representation X. If the combined cost of converting
the data from R to X, performing Mx, and possibly converting the result back to
representation R, is less than the time to compute MR directly from R, then this

* more complex path may be desirable.
To permit this type of opportunistic use of different representations of the same

data to optimize processing, conversions must exist from one representation to an-
other. A complete matrix of update operations allows any representation to be directly
converted to any other. The complete matrix has been implemented for Grids, RLE's
and Polygons (Table 3-1). The algorithms themselves are described in the following
sections.
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Figure 3-20: Definition of terms used in enveloping of convex

i polygons.

I

I

i SIMPLE POLYGON

NON-SIMPLE POLYGONI
Figure 3-21: Enveloping of a Non-Convex Polygon which results in

i a Non-Simple Polygon.
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3.5.1 Grid

3.5.1.1 Grid To RLE

The conversion from grids to RLE's is quite straightforward since the RLE is
simply a compact encoding of the same information already present in the grid. The
algorithm proceeds as follows:

for each row in the grid
run-list <- 0
start <- 0
for each grid cell

if grid cell = 1 and start = 0 then
start <- current column

if grid cell = i and (not start = 0) then
nothing

if grid cell = 0 and start = 0 then
nothing

if grid cell = 0 and (not start = 0) then
append the pair (start . current column) to the

end of run-list

start <- 0
if (not run-list = 0)

add run-list to rle

3.5.1.2 Grid To Polygon

Converting a grid representation to a polygonal one is more difficult than con-
verting from grid to RLE. The reason is that the two representations encode different
information; the polygon encodes the object boundary which is not explicitly repre-

sented in grid format.
The purely binary grid contains no information about the connectedness of re-

gions. Hence, the first step in converting grid to polygon, is to form a connected
components image where each disjoint region in the grid is assigned a unique label.
An 8-connected image can be created with a 3x3 mask. When the mask is centered
on a non-zero grid cell, it is 8-connected to all the other non-zero cells in the mask.

These cells are labeled consistently in the connected components image.
Once the regions have been isolated, their boundaries can be extracted. The cells

of the grid are examined until a new label is found. The boundary of the region is
then followed by examining the 8-connected neighbors of that cell and the direction
of movement to each non-zero cell. The cell with the path whose directions is most
counter clockwise with respect to the previous direction is chosen as the new cell. The
process continues until the boundary is traversed. The interior of the region must
then be scanned for holes.

The boundary of a grid-based region is not smooth since it is a discritization
of a possibly continuous curve. For example a diagonal line, when represented in a
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grid, takes on a jagged appearance. Hence, it is necessary to smooth the extracted
boundary by fitting straight line segments to jagged contours.

3.5.2 RLE

3.5.2.1 RLE to Grid

I As with the case of Grid to RLE, RLE to Grid is straightforward. A grid is
created that has the same dimensions as the implicit grid underlying the RLE. The
grid cells are initialized to be all O's. Each run-list of the RLE is examined, and for
each run in the list l's are written into the grid cell corresponding to that row and
the columns corresponding to the run.

3.5.2.2 RLE to Polygon

The conversion of an RLE to a Polygon uses the same notion of 8-connectivity
as used in Grid to Polygon. In this case, however, the algorithm moves from run-list
to run-list examining the runs to determine connectivity. By reasoning about the

* overlap of runs not every pixel represented by the run need be examined.

3.5.3 Polygon

3.5.3.1 Polygon to Grid

The conversion from polygon to grid is a standard scan-conversion problem com-
mon to raster graphics displays. Due to interest in graphics displays, and the require-
ment that such displays be fast, much attention has been paid to the scan-conversion
problem [Fole 82].

The algorithm produces scan-lines which correspond to rows in the output grid.
Each line is intersected with the non-horizontal edges of the polygon to produce a list
of intersections. The grid cells on the scan line which lie between these intersections
and fall inside the polygon must be determined. The portions of the scan-line which
lie inside the polygon can be determined by counting from left to right the number
of intersections of the line with the polygon. When the count is odd the line is inside
the polygon, and when it is even the count is outside the polygon. Horizontal edges
can be ignored, entirely. The only difficulty occurs when a scan-line intersects the
polygon at a vertex. A check for vertex intersections deals with this special case.

Where the scan-line is completely within the polygon, corresponding grid cells
are easily determined. At the polygon edges, where the scan-line enters and leaves
the polygon, determining whether or not a grid cell is inside or outside the polygon
is more difficult. We rely on Bresenham's line algorithm [Bres 65] to determine the
correct grid location of the polygon edges for a given scan-line. This algorithm chooses
the best grid locations for representing the edge, and does so quickly by using only
integer arithmetic.
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3.5.3.2 Polygon to RLE

The polygon to RLE algorithm is almost identical to the algorithm for polygon to
grid. The difference being, that the interior points do not need to be calculated. All
that is needed are the Bresenham generated intersection points, and the knowledge
of where the scan-line enters and exits the polygon. From this information, a run-list
is calculated for each scan line, with the start and stop points of each run being
generated by the Bresenham algorithm. The RLE produced will be identical to th-
polygon only if the polygon is only composed of vertical and horizontal edges. If the
polygon has diagonal edges, then the similarity will be limited by the accuracy of the
Bresenham routine.
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* 4. Performance Study

* 4.1 Structure of Study

The work of the previous Chapter provides the foundation for the performance
studies of this Chapter. The performance study is divided into the following stages:

e analysis of the complexity of .he algorithms under study,

e development and evaluation of a inherent data complexity measure,

* evaluation of algorithm performance,

* *generation of performance models.

The results of this study will show how to build a system which selects an efficient
processing sequence of algorithms and representations. It will also indicate the via-
bility of using a representation independent measure of data complexity to generate
performance models for algorithms. If this is possible, the study itself becomes a
model for generating such performance models.

4.2 Complexity of Algorithms

In this section we discuss the computational complexity of enveloping, and
boolean set operation algorithms for images represented by grids, polygonal bound-
aries, and run-length encodings (RLE's). We also examine the complexity update
algorithms for converting among grid, RLE, and polygonal data structures.

The enveloping algorithm takes an image object and returns a new object which
is comprised of the original one plus all points that are within a fixed (Euclidean or
Manhattan) distance from the object.

The boolean set operations being considered are OR, AND, NOT. AND and
OR return the intersection and union of two image objects; and NOT returns the
complement of an object.

A summary of our results are shown in Figure 4-1.

4.2.1 Operations on Grid Encoded Images

The locations of objects in images which are represented by either polygonal
boundaries or run-length encodings are explicit in the representation. In contrast, if
we wish to perform algorithms on the objects in a pixel array or grid representation, we
must first locate the objects in the image. The location information required depends
on the particular algorithm to be performed. For example, adjacency algorithms
require that the boundary of an object be known, whereas boolean set operations
require that all points in the objects be known.

For this discussion, grid algorithm complexity is divided into two parts. First we
discuss the complexity of the operations used to obtain the appropriate object location
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* I Polygons

Grids RLE's Convex Non-convex

Enveloping (2R+1)no Rnri nr ne ne2
R N nrnrl + nrnrl ne+ ne  ne n

AND N (nr+nr)min(nrl,nrl' ne+ ne ne ne

NOT N nr!ir ne+ Ue ne+ ue

I Notation: R enveloping radius
Grids: no = no. of points in object

d = typical object diameter; N = no. of image pixels
RLE's: nrl = no. of run lists; nr = average no. of runs per list
Polygons: ne = no. of edges

ue = no. of edges in universe

Table 4-1: Summary of Processing Algorithm Complexity Results

information. Secondly, we discuss the complexity of performing the algorithm on the
image object with known location. Since in practice, varying degrees of initial location
information are available, we further break down the process of locating the object
into several steps. In order of increasing information content (and, hence, increasing

algorithmic complexity), these steps include knowledge of:

*l 1. No points in the object,

2. 1 point in the object,

*I 3. All points in the object,

4. All boundary points, and

II 5. Boundary points and bounding box.

We shall first give the complexity of arriving at each of these informational states. In

our discussion of specific algorithms, we will specify the state of knowledge that we
are assuming as a starting point. The computational overhead involved in starting
from a different level of knowledge can simply be added on.

Below is a list of algorithms and their computational complexity for increasing
the degree of object location knowledge as specified at the beginning of each entry. We
assume that we are given an N-pixel image which contains a single object comprised

of n. pixels, nb of which are on its boundary. We will let d signify a typical diameter
of the object.

I



* No points -- 1 point. The straightforward approach is to simply go through
the image line by line until a point in the object is located. In the worst case,
this would take O(N- n,) steps. If it is known that the object is fairly compact
(that is, not stringy), then a more efficient approach is to sample the image at
intervals of approximately d pixels. The number of such intervals, and thus the
complexity of this algorithm, is O(N/d2 ).

* 1 point --* all points. Given one point in an image object which is known to be
convex, a region growing algorithm can be used to locate all remaining points in
the object (see Figure 4-1). The figure illustrates a region-growing algorithm for
4-connected convex image objects. The initial image object point corresponds
to the central grid cell in this diagram. From the initial point, new pixels are
tested for membership in the object in a radial pattern as shown. The precise
pattern used to expand from the initial point is indicated in the figure by the
progression from heavy to light lines. Any point which is found to lie outside
the image is not expanded. The image object thus consists of all pixels which
have been expanded. This algorithm checks each point only once and stops
on the boundary and is thus non-redundant. This requires 0(no) time. This
algorithm is insufficient for image objects of arbitrary shape, however. For
example, it will not find all points in an object with overhangs. In general,
an algorithm which determines the set of connected components in the entire
image or within some bounding box of the image object must be used. Such an
algorithm requires a first pass through the image or bounding box to establish
initial pixel labels and to build up a list of pointers which is used in a second
pass to determine the correct pixel labels from the initial values.

* One point or all points -- all boundary points. Given all points, a brute force
0(n,) approach would be to simply check them all and store those on the
boundary. For an object of arbitrary topology, that is, one that may have
holes, corresponding to multiple boundaries, this is a reasonable approach. More
efficient approaches are possible if the object is known to have no holes. Then,
starting from any point in the object, we need only to first locate a point on
the boundary (O(d)) and then follow the boundary around the object (O(nb)).

* Boundary points -- bounding box. The simplest approach is to go through the
list of all boundary points to determine the smallest and largest coordinates
of the object in each direction. This is obviously an O(nb) operation. If the
boundary points are listed in order corresponding to traversal of the boundary,
then computational effort may be reduced by using the fact that the coordinates
of consecutive boundary points differ from each other by no more than 1 in each
direction. Thus, if the coordinates of the boundary point being examined are
d away from the minimum and maximum boundary coordinates found thus far
for each direction, then the d subsequent points in the list can be safely ignored.
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4.2.1.1 Enveloping

The enveloping algorithm that we now discuss for grid-based images returns an
image object which consists of the original image object and all pixels within a given
Manhattan distance R from it. We assume that the image contains a single object
whose boundary and bounding box are known.

The algorithm computes the chamfer array [Barr 78] within an expanded bound-
ing box. The bounding box is specified by its minimum and maximum z and y
coordinates. We expand the box outwards by R in each direction by letting

4 - - R

XM" XMA + R
Yraxyma x nxR.

It is easily seen that the image returned by enveloping will contain points on the
boundary of, but not outside, this enlarged bounding box. Therefore, we compute the
chamfer array within the enlarged bounding box. This algorithm gives the Manhattan
distance of each cell from the image and requires only two passes through the box.
The enveloped (returned) image contains all pixels less than or equal to R away
from the image (including the image itself, which is a distance of 0 away). Since the
enlarged box contains on the order of (2R+ d)2 pixels, this algorithm is 0((2R+ d)2 ).

A more straightforward algorithm involves passing a mask of size 2R + 1 by
2R + 1 over the grid. Each grid cell is examined, and if the cell contains a 1 then
each cell covered by the mask, centered on that cell, is set to 1. Since all cells are
examined, the cost is O(N). The actual running time is dependent on the number of
grid cells that are 1: no.

If a connected components representation is available, an enveloping algorithm
can be written which traces the boundary points of the labeled regions with the same
mask as above. The algorithm still has complexity O(N) but will involve setting
fewer grid cells to l's, and hence may be faster.

4.2.1.2 Boolean Set Operations

The boolean set operations (union and intersection) for grids are straightforward.
They involve looking at each grid cell in each of the input grids. Since the spatial
correspondence between input grids is known, each cell is compared with only one
other cell. The algorithms then examine 2N grid cells and set N grid cells in the
output grid where N is the total number of cells in the grid. The resulting complexity
is o(N).

4.2.1.3 Negation

The negation operation is similar to the other boolean operations. Each grid cell
is examined and its value is switched from 1 to 0 or 0 to 1. This involves a cost of
O(N).
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4.2.2 Operations on Polygon Encoded Images

-- The data structure we use for polygon encoded image objects is a list of 4-tuples,
one for each edge. Each 4-tuple contains the coordinates of vertex 1 and vertex 2
(where the vertices of an edge are numbered in the order in which they would be
encountered in a clockwise traversal of the polygonal boundary), a pointer to the
previous edge, and a pointer to the next edge (where again, previous and next refer
to a clockwise traversal). The distinction between inside and outside of the polygon
is unambiguous in this representation. Standing at vertex 1 of an edge and looking
toward vertex 2, the inside of the polygon is to the right and the outside is to the
left. We will label the number of polygon edges (also the number of vertices) by n,.

4.2.2.1 Enveloping

Convex Case We will assume that the enveloping algorithm is performed on a
convex polygon. The algorithm relies on the fact that there is a one to one mapping
between vertices of the original convex polygon and those of the enveloped polygon.

The algorithm is quite simple. For each vertex of the original polygon, the
corresponding vertex of the enveloped (returned) polygon is determined as specified
in Section 3.4.3. Since only a single traversal of the polygon is required to compute
these quantities, this algorithm is 0(n,).

H Non-Convex Case In the case on non-convex polygons, enveloping becomes
more complicated. Following the technique described above can lead to non-simple
polygons; that is, polygons with overlapping edges (Figure 3-21).

An algorithm for the non-convex case proceeds in two stages. The first stage
performs the algorithm described for convex polygons. The second phase transforms
potentially non-simple polygons into simple ones. This second phase conceptually
corresponds to performing a union of the polygon with itself. Boolean set operations
for non-convex polygons will be described below, and as we will see, boolean opera-
tions on polygons with n, and n' edges is 0(nn'). Hence, the union of a polygon of
n edges with itself is 0(n2 ). This increases the complexity of enveloping from 0(n)
to O(n 2 ) in the non-convex case.

4.2.2.2 Boolean Set Operations

Convex Case The intersection of convex polygons n and n', with ne and n' edges
respectively, can be found in time 0(n. + n'). The convexity of the polygons allows
us to subdivide the plane they occupy into regions in which the intersection is easily
computed [Prep 85].

To subdivide the plane, we choose an arbitrary point P in the plane. From P we
draw lines to each of the vertices of n, and ne. We now sort these lines by angularorder around P. If P is inside a polygon this sorting is trivially determined by the

order of the vertices. If P is outside a polygon, say at infinity, the lines can still be
sorted into angular order in time 0(ne). This is done by walking the vertices of the
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polygon examining the next and previous vertices, sorting each triple into the correct
order.

When the lines have been sorted for each polygon they can be merged into
a single ordered list in time linear in the total number of vertices. These lines now
divide the plane into sections, the ordering of which constrains the locations of possible
intersections. The polygons can be thought of as being sliced into sections by the
lines. These sections are, in general, quadrilaterals, but when P is at infinity they
are trapezoids (Figure 3-15). The ordering of the lines allows this slicing to be done
in time proportional to the total number of edges.

The intersection of the two polygons in a given section is the intersection of the
slices of the polygons in that section. That is the intersection is the intersection of
quadrilaterals which can be found in constant time. The individual intersections can
be merged together by a single ordered pass of the sections. If desired, extra colinear
vertices, introduced by the slicing procedure, can be removed in linear time.

Non-Convex Case The boolean comparison of arbitrary simple polygons is more
complex. While still assuming simple polygons, we handle the comparison of sets of
disjoint, possibly concave polygons with holes. The algorithm, derived from [Weil 80],
merges the individual polygons being compared into a graph representation where the
boundaries of the polygons are arcs in the graph (see Section 3.4.1.2). This graph
structure has embedded in it the output polygons of each boolean operation. Hence
one application of the algorithm is all that is needed to compute AND, OR, and NOT.
Other operations useful in computer graphics, such as clipping, can also be computed
with no additional effort.

The computational expense of the algorithm lies in the intersection testing and
the sorting of spatial relationships. In the worst case every edge of one polygon rnst
be tested for intersection with every edge of the other polygon. So for polygons n
and n' with n. and n' edges respectively, we have a worst case cost of O(ner'). In
practice, many edges can be eliminate from consideration by simple boxing tests. An
initial screening phase, with cost O(n. + nt'), can eliminate all edges which do not fall
within the minimum bounding rectangle of the other polygon. If the polygons have
many more edges than points of intersection the cost of this filtering will likely pay
off.

In fact, a hierarchy of boxing tests can be applied to reduce the cost, but not
the inherent complexity, of the algorithm. For example, a quick test to see if the
minimum bounding rectangles of two edges intersect, can reduce the number of actual
edge intersection tests that must be performed.

4.2.2.3 Negation

The complexity of polygon negation varies with the nature of the universe which
provides the frame of reference for the negation. In the general case of negating a
polygon with respect to an arbitrary universe, negation is treated as another polygon
set operation. Consequently, the cost is O(n.u.) where u, is the number of edge: in
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the universe polygon. In the special case where the universe is a rectangle the cost is
4n, or O(n.).

When the universe and the polygon being negated are disjoint, the problem more
simple. A shuffling of contours achieves the desired result in time O(n.), since every
edge must be copied in the shuffle.

4.2.3 Operations on Run Length Encoded Images

A run length encoded image object consists of a list of run lists, each of which
corresponds to a row of the object, where row is defined with respect to the underlying
pixel representation. A run list contains the row number and a list of start and stop
columns which delimit runs of the object. We will let nl be the number of run lists
in a run length encoded object. The average number of runs in a run list will be
denoted n,.

4.2.3.1 Enveloping

Enveloping of a run-length encoded image may be accomplished in two steps.
First, each run of the image is enveloped separately. Second, a run merging operation
destructively finds the union of each run in the envelope RLE and the output RLE.
A more efficient algorithm, in which only partial envelopes are created for each run,
is specified in detail in the Final Technical Report for SDS I. We expect however
that the computational complexity of these two algorithms differs only by a constant
factor, since on average a partial envelope will contain as many runs as a complete
envelope.

If R is the enveloping radius, then to envelope a given run we generate R new
runs and destroy the original one. Since there are nt.n, runs, this requires Rn,1n,
operations. To merge these enveloped runs, we first merge the envelopes of all runs in
each row separately. For this we use the algorithm below for OR, the operator which
takes the union of sets. The run envelopes for runs in a given row are already aligned.
Therefore, this requires only O(Rn,.) operations. Finally, we merge the merged run
lists of successive rows. The envelopes of runs in successive rows overlap in at most
R/2 rows. For the original image object to have been connected, it must be the case
that the union of the enveloped runs from successive rows contain no more than the
maximum number of runs in the two rows. If, on average, this number is n,, then
the complexity of merging the run envelopes for successive rows is O(Rn,). Clearly,
the greatest computational effort goes into the initial enveloping of each run. Thus,
the computational complexity is overall of O(Rn,1n,).

4.2.3.2 Boolean Set Operations

For the set operations AND and OR we first perform alignment and sorting
routines. First we align the two run length encoded image objects by rows. We
assume that the run lists are given in order of increasing row number. To line up two
image objects we first determine whether their row numbers intersect by comparing

4-8



the first and last row numbers of the two objects. The number of integer operations
required for this is at most 4. Then placing the rows in correspondence is linear in the
number of run lists n., n,' of the two objects. Once they are in registration, each row
containing both objects is considered separately. The run lists fo the two objects in
a given row are sorted based on the first element in each run. We then go through
the sorted list, comparing the end column of the ith run in the list with the start
column of the (i + 1)st. In the worst case, comparing run lists in this way requires
O((n, + n') x min(n,,n')) time.

For AND we, in addition, label each run by the object it belongs to. For each
row that contains runs of both objects, we do the following.

OR Beginning with the first run in the ordered list, and for each run i in order, until
the run is copied over to the list of runs in the union, do:
BEGIN
If the start column of run i + 1 is more than 1 greater than the end column of
run i, then copy run i onto the list of runs forming the union for this row.
Otherwise, replace the ith run in the list by a run whose start column is that of
the ith run and whose end column is the greater of the end columns for runs i
and i + 1. Eliminate run i + 1 from the ordered list and renumber the remaining
runs.
END
In addition, all run lists for rows which are occupied by a single object only
must be copied over to the list of runs in the union as well.

In addition to the computational burden of comparing and sorting the run-
length encoded images (see above), each run of both images is either merged to
form another run or copied directly onto the list of runs in the union. Thus the
additional computational complexity is simply on the order of the total number
of runs of both images, that is, O(n,nrl + n'n',.).

AND Compare all pairs of adjacent runs in the list in order. If run i and run i+ 1 are
from different objects, and if the start column for run i + 1 is less than or equal
to the end column for run i, then add to the list of runs in the intersection a
run whose start column is the start column of run i + 1 and whose end column
is the greater of the end columns for runs i and i + 1. This algorithm relies on
the assumption that the intersection of any three runs in the sorted run list is
zero. This assumption follows from the fact that we are taking the intersection
of exactly two image objects and from our assumption that the runs specified
for a single image object are disjoint.

In the worst case, the number of rows occupied by both image objects is equal
to min(n,., n.1). The computational complexity is simply this number times the
total number of runs in each sorted run list, that is, O(min(n,., n'1) x (n, + n,)).
This computational effort must be added to that of comparing and sorting the
images.
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Algorithm Computational
Complexity

Grid to RLE N

Grid to Poly N

RLE to grid

RLE to poly r

Poly to grid e

Poly to RLE e

Notation: N = number of cells in grid

r = number of runs in RLE
e - number of edges in polygon

I Table 4-2: Summary of Update Algorithm Complexity Results

4.2.3.3 Negation

If they are not already sorted, sort the runs in each run list in order of increasing
start column. For each row that has no run list, NOT includes a run consisting of the
entire row (start column = image-start-column, end column = image-end-column).
Then for each run list, NOT includes the following runs, which we specify by the start
and end columns. Run 1: image-start-column, run 1 start column -1 (assuming the
latter is not less than the former). Run 2: (end-column run 1) +1, (start-column run
2) -1. Run i: (end-column run i - 1) +1, (start-column run i) -1. Run r., + 1 (final3 run): (end-column run n,) +1, (image-end-column).

If we assume that this algorithm is carried out within a bounding box of the
image, and that the runs in each run list and the run lists themselves are sorted,
then the computational complexity is on the order of the total number of runs in the
image, that is, O(nn,).

I 4.2.4 Update Algorithms

The computational complexity of the update algorithms presented in Chapter 3
is shown in Table 4-2. In each case, it is the representation complexity of the input
that determines the complexity of the algorithm. Notice also that all the algorithms
are linear in the complexity of the input.

4.2.4.1 Grid to RLE

The conversion from grid to RLE is straightforward. The algorithm must exam-
ine each grid row, one cell at a time and take the appropriate action depending on
the value of the cell and whether or not a run is currently being formed. Since every
cell must be examined, the algorithm is O(N) where N is the number of cells in the
grid.
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4.2.4.2 Grid to Polygon

Grid to polygon is more expensive than grid to RLE. The algorithm must first
determine the connectivity of the grid cells, creating a connected components grid.
This involves one pass over every cell in the grid with a 3X3 mask. The cost of this
operation is O(N). The next stage involves tracing the boundaries of the regions.
This step is O(nb) where nb is the number of cells on the region boundaries. Since
the number of boundary points is less than the total number of grid points, we have
a total complexity of O(N) for the combined operation.

I 4.2.4.3 RLE to Grid

The RLE to grid operation simply iterates over the runs in the RLE depositing
l's in the grid for each point in the run. The resulting complexity is 0(r), where r is
the number of runs in the RLE.

I 4.2.4.4 RLE to Polygon

The algorithm for converting from RLE to polygon moves from run-list to run-
list. keeping track of the next and previous run-lists. The individual runs in the
list are compared against the runs in the next and previous run-lists to determine
connectivity. Knowing tLe order of the run-lists allows this operation to be local and
keeps the complexity linear in the number of runs 0(r).

4.2.4.5 Polygon to Grid

The polygon to grid algorithm intersects a fixed number of scan-lines with the
polygon structure; the cost for this is se, where s is the number of scan-lines and e is
the number of edges in the polygon. Since s is fixed, we have an analytic complexity
of O(e).

4.2.4.6 Polygon to RLE

The polygon to RLE algorithm is essentially the same as the algorithm for poly-
gon to grid conversion. The complexity of the polygon to RLE operation is hence
O(e) as well.

4.3 Complexity of Data

I 4.3.1 Defining an Inherent Data Complexity Measure

While algorithmic computational complexity is a well-defined and in principle

computable quantity, effective computational complexity can vary widely with the
complexity of the data being operated on. Our goal is to develop a complexity measure
for an underlying image data set so that we may correlate the effective algorithmic
complexity with this image complexity measure.

I 4-11
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We are not the first to consider the notion of complexity of'images. In fact,

the notion of complexity is implicit in pattern recognition and digital filtering. Most
pattern recognition schemes begin with a 'cleanup' process involving the filling in
of holes, smoothing of lines, connection of arcs, etc., each of which renders the im-
age, in some intuitive sense, less complex. Grenander ([Gren 69],[Gren 70]) discusses
in mathematical terms the properties that such simplifying operations should have
and their relationship to the classification process. In digital filtering, constraints
such as maximum entropy are imposed to determine a unique solution to the oth-
erwise ill-posed inversion problem. There are several related complexity measures.
Shannon entropy [Shan 49] is related to the information content of an image or of
any 'message'. Grassberger [Gras 86] defines and discusses several complexity mea-
sures on dynamically generated (e.g., chaotic) patterns. Finally, Huberman et. al.
([Hube 86],[Cecc 87]) have defined a complexity measure for hierarchical structures
which takes into account the diversity of substructures at each level of the hierarchy.

In the remainder of this chapter we discuss what we believe to be desirable
properties of an image complexity measure as well as the factors which we believe
should enter into the measure. Our discussion is consistent with the intuitive notion
of simplicity/complexity used in pattern recognition as described above; it contains
information theoretic elements as well.

4.3.1.1 Desired properties of the complexity measure

With respect to our goal of estimating computational complexity as a function of
image complexity, an image complexity measure should have the following properties:

1. Scale invariance

We would like to be able to compare the complexities of data sets of different
sizes, that is, of different physical sizes or of different resolution. This requires
an appropriately normalized measure. On a binary array, for example, com-
plexity should be independent of changes in resolution (modulo the aliasing
problem). Intuitively, we do not want complexity to depend on the size of an
object, except perhaps as it relates to the size of other objects in the imi.ge.
Rather, complexity should depend on the shape and topology of objects. (We
give a precise definition of "object" in Section 4.3.1.3)

In typical pattern recognition processes, after an image is 'cleaned up' as de-
scribed above, the pattern is centered and brought to a standard scale so that it
may be more easily classified. The point we would like to make here is that this
scaling process does not change the identity of the pattern or object represented
by the pattern. If complexity is an identifying property of a pattern, then, it
should not be affected by simple linear scale changes in the pattern.

2. Reflection symmetry

The complexity measure should be invariant under reversal of O's and l's (as-
suming a binary grey-scale). The premise here is that data is equally complex

4-12
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for objects made up of l's on a background of O's as for the same objects made
up of 0's on a background of l's. For example, a field with scattered clumps
of trees may have the same complexity as a forest with scattered clearings.
The desire for reflection symmetry in the complexity measure is motivated by
the belief that topological considerations should completely override absolute
specifics such as whether a region is labeled by O's or by l's.

For a multivalued grey-scale, the notion of reflection symmetry generalizes
straightforwardly to permutation symmetry. An image attribute is permuta-
tion symmetric if its value is unchanged under permutation of grey-scale value
labeling.

4.3.1.2 Image attributes entering into the complexity measure

The complexity measure must in some general way reflect how difficult it will
be to perform computations on the data. To achieve this, we would like to com-

press the complete set of image data into a smaller set of image attributes which
will be sufficient (together with a measure of algorithmic complexity) for estimating
the computational complexity of performing an algorithm on the input image data.
Furthermore, we may characterize an image attribute according to whether it is on
the pixel level, the 'object' or group-of-pixels level, or the group-of-objects level. An
attribute is said to be at a certain level if it can be computed by considering items
only at that level or at lower levels. Candidate image attributes include:

*1. Number of objects (object level)

The greater the number of objects, the greater the number of separate things
we need to keep track of.

2. Image entropy (pixel level)

Computations are relatively easily done on images with little information con-
tent. For example, calculations are trivial when carried out on images that are
all white or all black. In some average sense it should be increasingly difficult
to perform computations on arrays of increasing information content.

3. Object compactness (object level)

The less compact, or 'stringier', an object is, the more difficult it is to compute
with. We might alternatively or additionally have a term in the complexity
measure which is a function of the amount of information required to define
an object. (In practice, however, this might be difficult to compute because it
would entail determining the symmetries of each object.)

4. Clustering of objects (group-of-objects level)

Effective computational complexity will be different in the case that objects are
clumped in the corner of an image than when they are distributed uniformly
throughout the image.

I 4-13
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Of course, there are many other image attributes that could be considered in the

complexity analysis. For example, at the object level, Levine [Levi 85] lists these:

e Number of vertices.

* Variance in the lengths of sides of the figure, or ratio of maximum to minimum
side length.

Boundary curvature.

Clearly, these object or shape complexity characteristics are not mutually indepen-I dent, nor are they completely redundant. For simplicity,the complexity analysis uses
object compactness as the only the shape descriptor. The analysis also includes the

m image descriptors number of objects and image entropy.

4.3.1.3 Definitions for complexity attributes

The previous section motivated the choice of image attributes on which the image
complexity measure depends. No one of these attributes has a unique definition. In
this section we discuss our specific choices for the definitions of these terms.

1. Number of objects
An object is a region of the image composed of O's (or l's) which is borderedI entirely by a region of l's (or O's) or by the edge of the image. In the more
general case of a multivalued grey-scale, an object is simply any connected
component. In this way every region of unique grey-scale value (or, for a discrete
image data set, every cell in the image) belongs to an object.
The motivation for this is that without a priori knowledge of which regions or
objects are of interest, every connected component is of potential interest. As
noted in the discussion of reflection/permutation symmetry in Section 4.3.1.1, it
does not make sense to assign arbitrarily as objects those connected components
with specific grey-scale values.

2. Image entropy
Image entropy is defined simply to be Shannon entropy. That is,

entropy = pi log 2 P1 ,

where pi is the fraction of the image with grey-scale level value i. This definition
is clearly symmetric under permutation of grey-scale level values.

For a binary image, i is either 0 or 1 and po = 1 - pi. Entropy i then equal to
0 when po = 0 or P, = 0, and is a maximum at the midpoint po = p, = 1/2. As
discussed in Section 4.3.1.1, this is the desired behavior.

3. Object compactness
The compactness of an image object to be

compactness = perimeter/ ,
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where perimeter and area are, for a binary array, measured in units of grid
spacing (i.e., the length of a grid cell edge) and number of grid cells respec-
tively. The reason for dividing perimeter by ,a rather than by, say, area is
invariance under linear scale transformations. For example, a square that is n
on a side has the same value of (perimeter/ /are) as one of side m for any n
and m.

Note that for digitized images this measure of object compactness is commonly
used with perimeter taken to be the number of cells on the border of the object,
rather than the length of this border. The difference between these two measures
of perimeter arises at 'corner' pixels. If the value of perimeter is the number
of cells on the object border, then the compactness measure given above is not
invariant under a linear change of scale.

To see that the compactness measure (with perimeter equal to the length of the
object border) is invariant under a linear change of scale, note that any change
of scale is equivalent to simply changing the yardstick with which measurements
are made. For example, say perimeter is measured in some linear units called
unit 1 , so that perimeter = p unit 1 . Rescaling the image by using a different
unit of length unit 2 where unit 2 = b unit1 for some positive scale factor b.
In these new units, perimeter = p/b unit 2. Similarly if area = a unit 1 , then
after the change of scale, area = a/b2 unit 2. However, the combined quantity
(perimeter/fairea is dimensionless and therefore does not depend on the scale
factor b. Compactness as defined above is therefore a scale invariant quantity.

Given this definition of compactness, we must still define perimeter and area
of connected components. Whereas the definition of area is straightforward,
that of perimeter is not, particularly in the case of objects with holes (i.e., with
multiple boundaries) and of objects which border in part on the edge of the
image. The following convention will clarify this. The perimeter of an object is
defined to be the summed lengths of all boundaries of the object. If some of an
object's boundaries begin and end on the edge of the image, then the perimeter
includes the length of that portion of the edge which connects the boundary
ends such that the object is enclosed (see Figure 4-2).

Finally, note that in practice, the quantity of interest is

(perimeter/rv\/-e' )

where (...) represents an average over all objects in the image. In the definition
of perimeter above, each boundary of the image is used exactly twice in this
averaging process. One may define perimeter in such a way that boundaries
are used only once in the averaging process. This was deemed less preferable,
however, since it entails having qualitatively different definitions of perimeter
as a function of boundary topology.

4. Clustering of objects
One measure of object clustering is simply the fluctuation or standard deviation
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Figure 4-2: Boundary of Object

in position of object centroids. We do not discuss this further since we do notImake use of a clustering of objects measure in what follows.

4.3.1.4 Image complexity measure

The previous sections defined a space of image attributes. This section we uses
these attributes to define a single value representative of the image complexity. It
combines the number of objects (N), the image entropy (E) and the mean object
compactness (c) into a single complexity number (C) calculated as follows:

U C= N "

IWhile this complexity measure may or may not correspond to human intuition
about the complexity of images (see Section 4.3), its validity as a complexity measure
must be evaluated empirically. To be a good measure of complexity it must:

I be a good predictor of algorithm performance,

I be computable from any representation,

* be independent of representation,

Sbe quickly computed.

Algorithm performance is usually specified in terms of representation complexity,
hence if our complexity measure is closely correlated with various representation
complexities it will likely be a good predictor of algorithm performance.
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Name Dataset No. Objects Complezity Theme
cnpy0 55 high all canopy
cnpyl 12 low Canopy: 0-25
cnpy2 22 med Canopy: 25-50
cnpy3 3A 15 8.95 Canopy: 50-75
cnpy4 6A 40 170.06 Canopy: 75-100
obst 1 21 low all obstacles
trav 8 low Cross Cntry Movement: 1
trav2 7B 67 359.59 Cross Cutry Movement: 2
trav3 7A 78 378.86 Cross Cntry Movement: 3
trav4 3B 20 9.85 Cross Cntry Movement: 4
trav5 1A 5 0.29 Cross Cntry Movement: 5
trav6 6B 40 177.04 Cross Cutry Movement: 6
trav7 4A 23 20.39 Cross Cntry Movement: 7
typl 35 high Agriculture, cropland
typ2 4B 23 36.97 Grassland, pasture, meadow
typ4 5B 41 97.83 Coniferous forest
typ5 29 med Deciduoub forest
typ6 * 5A 39 70.61 Mixed forest
typ7 2B 8 1.48 Forest clearings, cutover areas
typ17 IB 3 0.05 Bare ground, sand dunes
typ29 2A 11 2.96 Villages
typ30 13 low Towns

Table 4-3: CATTS Data from which selections were made.

I 4.3.2 Data Selection

To be effective, the data selected to be used in the performance analyses of this
project has to conform to several constraints. First, it must to be real data. Since the
results of this research are to be used in terrain -.aalysis systems that operate over

m real terrain data, it was felt that "theoretical" or otherwise "tuned" data would not
be truly representative. Consequently, a variety of feature datasets of CATTS data
from the Fulda Gap region of Germany were used to make the selections of data to
be used in the studies (Table 4-3).

Secondly, a range of data complexities was chosen. This is based on the hypoth-
esis that the efficiency of algorithms and data structures "tuned" to different data
structures will vary depending on data complexity. That is, some algorithms will
work better on "low" complexity data than "high" complexity data. Consequently,
the complexity of the application data may determine the choice of data structure.
Such determinations are the goal of this study.

* I4-17
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Name Dataset Objects Entropy Compactness Complexity
trav5 1A 5 0.0102 5.732 0.292
typl7 1B 3 0.0036 4.663 0.050
typ29 2A 11 0.0407 6.613 2.959
typ7 2B 8 0.0350 5.297 1.482
cnpy3 3A 15 0.0968 6.160 8.951
trav4 3B 20 0.0750 6.568 9.846
trav7 4A 23 0.1272 6.965 20.387
typ2 4B 23 0.1883 8.534 36.966
typ6 5A 39 0.2776 6.524 70.614
typ4 5B 41 0.3543 6.734 97.827
cnpy4 6A 40 0.5609 7.579 170.056
trav6 6B 40 0.5907 7.493 177.939
trav3 7A 78 0.6350 7.649 378.875
trav2 I 7B 67 0.6389 8.401 359.591

Table 4-4: The selected datasets.

4.3.3 Inherent Data Complexity of Datasets

The data complexity measure described in 4.3.1 was used to select 14 datasets
to make up the test suite. The data was originally available only in grid form and
was converted as necessary to the other data representations being used.

The selection took place in two steps. First, the original candidates (Table 4-
3) were plotted and ranked by visual inspection since the data complexity measure
generally corresponds to human intuition. Then the data complexity measure was
computed for "likely" datasets and examined to make sure that

* The paired datasets had similar complexity values

* The seven paired datasets covered a wide range of complexity values

* The spacing between complexity values for the different datasets was fairly
constant

The results are shown in both tabular (Table 4-4) and graphic form in 4-3.
Pairs of datasets are required for some algorithms such as the intersection and

union operations. The datasets were selected from the same geographic location
within a single terrain database and often from the same thematic field. Since a
given theme partitions the world into disjoint regions, many of the chosen datasets fit
together like pieces of a jigsaw puzzle. For boolean set operations this creates uninter-
esting and artificial results. To provide more interesting test data three new datasets
were created from three of the original datasets by either shifting or transposing the
real image's coordinates. For example, Figure 4-3 shows dataset 6A. Switching the
X and Y axis we creates a new image (Figure 4-4) with the same complexity as the
original image but with a different description.
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Figure 4-3: Dataset 6A

N. hN

Figure 4-4: Dataset 61: 6A with X and Y axis exchanged.
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OATA INHERENT COMPLEX GRID COMPLEX RLE COMPLEX POLY COMPLEX

I IRIS .584 700.000 139.932 92.000
2 2R,31 11.910 6945.000 562.884 492.000
3 4R,31 29.338 12471.000 1006.938 887.000
4 5R,31 19.565 26005.000 1556.808 1317.000
5 6R,31 179.007 70361.000 2707.064 2209.000
6 4R,61 1903.443 72504.000 3004.130 2490.000
7 5R,61 240.670 86038.000 3554.000 2920.000
8 7A,31 387.826 91989.000 3894.904 2994.000
9 7R,61 548.931 152022.000 5892.096 4597.000I

I
Table 4-5: Paired Datasets and Combined Complexity

Similarly, dataset 31 was created by transposing the X and Y axis of dataset 3A

(see appendix, Figure 7-9). An additional test dataset was created from dataset 1A
which was shifted by three pixel locations in the negative X and positive Y directions
to produce dataset 1S (see appendix, Figure 7-8).

Then, the datasets were paired to pioduce a range of combined complexities
(Table 4-5). Pairs were created from datasets of high and low complexity, low and
low complexity, high and high complexity, etc.

4.3.4 Representation Complexity of Datasets

The analytic complexity of the chosen algorithms (see Section 4.2) determines
properties of a representation affect processing time. The key properties of the rep-

* resentations are:

* Grid: the number of grid cells N and the number of cells corresponding to
regions n.,

* RLE: the number of runs n, and the number of run lists n,I,

I * Polygon: the number of edges ne.

To compute the representation complexity of each test dataset (1A - 7A) the
dataset is instantiated in each of the representations (Grid, RLE, and Polygon). The
appropriate representation properties are measured, and the results tabulated (see
Tables 4-6 -- 4-8).
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COMPLExITY MERSURE IR 2R 3R 4R 5A 6R 7R

I NO. OF POINTS 350 1781 5164 7307 20841 65197 86825
2 N m N 262144 262144 262144 262144 262144 262144 262144

I
Table 4-6: Grid Representation Complexity of Datasets

I
COMPLEXITY MEASURE lA 2A 3R 4A 5R 6R 711

I RUN LISTS 69.000 156.000 276.000 338.000 438.000 512.000 512.000
2 VJ ERAG'ENO. RUNS PER LIST 1.014 1.333 1.286 1.929 2.744 4.594 -6.914
31 TOTIL RUNS (ROWI *ROW2) 69.996 207.948 354.936 652.002 1201.872 2352.128 3539.968

H Table 4-7: RLE Representation Complexity of Datasets

I

I COMPLEX ITY MEASURE I ZR I 3R 4R SR 6R 7R

I NO. OFPOLYGONEOGES 46 189 303 584 1014 1906 2691

Table 4-8: Polygon Representation Complexity of Datasets
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4.4 Analysis of Data Complexity

Given knowledge of the analytic complexity of an algorithm and the representa-
tion complexity of the inputs, one can predict the expected relative performance of the
algorithm. The question is whether or not inherent data complexity likewise provides
a good predictor of algorithm performance. If there exists a statistically significant
relationship between inherent data complexity and representation complexity then
data complexity is likely to be a valuable predictor.

Figures 4-5 through 4-7 graphically illustrate the relationship between repre-
sentation and inherent data complexity. The graphs show the relationship between
representation complexity and data complexity, as well as the components of the
data complexity measure (entropy, compactness, and number of objects). As can
be seen in these graphs, there is a roughly linear relationship between representation
and data complexity. This means that as representation complexity increases we can
expect a linear increase in the inherent data complexity.

To test whether or not inherent data complexity is a good predictor in practice,
we must generate performance models for the given algorithms using both repre-
sentation and inherent data complexity. If both measures give roughly equivalent
performance models which have similar accuracies, then we will have empirical veri-
fication that data complexity can be used to predict performance.

U 4.5 Performance Models of Algorithms

4.5.1 Test Environment

The goal of this portion of the Phase II research is to develop performance models
of the selected algorithms. The methodology for generating performance models is as
follows:

* set up a baseline test environment

* run the algorithms against the selected datasets,

calculate the running times for the algorithms,

* tabulate the results of running time verses representation complexity and in-
herent data complexity,

* fit a curve to the data using expectations of algorithm performance,

* compare curves generated using the two complexity measures.

4.5.1.1 Running and Timing the Algorithms

The algorithms used in this study were developed on a SUN 3/110 running Ver-
sion 3.5 of the UNIX operating system, with 12 megabytes of available memory. The
specific programming environments were Lucid LISP Version 3.0 and the Common
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Lisp Object System (CLOS) [Bobr 88). The basic timing tool used in this performance
study is a macro supplied in Lucid LISP.

The Lucid macro "time" was used to measure the CPU time of each execution of
an algorithm. The timing function provides a rough break-down of where processing
time was spent. The following is an example of the timing function applied to the
grid intersection operation:

Grid intersect.
;;; GC: 542672 words [2170688 bytes] of dynamic storage in use.
;; 1161262 words [4645048 bytes] of free storage available

;;; before a GC.
;; 2865196 words [11460784 bytes] of free storage available

;;; if GC is disabled.
Elapsed Real Time = 94.08 seconds
Total Run Time = 88.26 seconds
User Run Time = 85.86 seconds

System Run Time = 2.40 seconds
Dynamic Bytes Consed = 32776

*There were 14 calls to GC

Notice that before the operation is run, the "Garbage Collector" is called to reclaim
any free memory. The function is then run and the computed timings are displayed.
The "User Run Time" value provides the most accurate measure of the processing
time of the algorithm. Unfortunately, when running in a Lisp environment, it is
not possible to completely isolate the running of the user process from that of system
processes like garbage collection. While we have access to how often garbage collection
was performed, we do not have a measure for the total time involved.

To alleviate some of the uncertainty involved in timing Lisp functions, algorithms
were timed on a number of separate runs. The minimum run-time for each algorithm
was selected, as this represents the closest to optimal performance of the algorithm.
The algorithms were run up to five times each (Figure 4-9), and the test environment
was restarted often to provide an uncorrupted LISP environment to insure the most
accurate timings.

Additionally the order in which tests were run was altered periodically to ensure
that this ordering had no impact on the timings. The times from one run of an
algorithm to another differed very little. Occasionally extra time would be spent in
garbage collection or system functions. By taking the minimum time, anomalies like
these were removed from consideration.

Note that, for the purposes of this study, the absolute processing times of the
algorithms are not especially significant. Instead, the important information is the
relation of the run time of one algorithm to the run time of another algorithm. Given
a more powerful computer, each of the algorithms would run much faster, but pro-
portionatel',, their run time would be the same. Thus when analyzing the expected
performance of an algorithm, it is important to use the predicted time only as a
comparative figure and not an expected running time. This highlights the signifi-
cance of having a baseline environment in which to perform these tests. Without a
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DATA SET TRIAL I TRIAL 2 TRIAL 3 TRIAL 4 TRIAL 5 MIN TIME MEAN TIME
IAI 7.58 7.58 7.72 7.70 7.58 7.58 7.632

2, A1 32.28 32.36 32.36 32.08 32.06 32.06 32.2281

3A3 45.96 45.94 46.00 45.94 46.36 45.94 46.040

41 4AI 90.80 91.74 90.82 90.78 91.58 90.78 91.144
5 i 5R 169.78 164.76 1 64.70 166.12 164.72 164.70 166.016

S6 6R 340.84, 340.62, 339.08, 381.58, 376.84, 339.08, 355.792

7 7R 476.58 477.441 476.341 476.281 472.361 __ 472.36 475.800

I
Table 4-9: Example Trials for RLE to Polygon Update Algorithm

common environment for each algorithm it is impossible to accurately compare their

performance.

4.5.1.2 Computing a Performance Model (Regression)

The tests in this performance study involve two measurements; the processing
time of the algorithm, and the complexity of the input. These measurements pro-
vide two variables which form a bivariate population. Given such a population, two
questions arise:

I e is there a relationship between the the variables?

* if they are related, what equation best expresses the relationship in some sense?

Plotting the test points on a graph with processing time on the Yaxds and complexity
on the X axis produces a scatter diagram. The gcal i- to find an equation whichIwill minimize the square of the error between the observed values and the values
predicted by the equation. This is known as the method of least squares, and the
equation generated is known as the regression of Y on X.

Given the best equation expressing the relationship between the variables, the
next step is to determine how useful it is for estimation. This satisfies the project
goal; to be able to accurately estimate the processing time of an algorithm from the
complexity of the input. This predictive equation yields a performance model for the
algorithm. The predictive value of the equation is expressed by r, the correlation
coefficient. The square of this (r 2 ), otherwise known as the coefficient of determi-
nation, because it has the useful property of always being between 0 and 1, where 1
indicates a perfect correlation and 0 indicates no predictive correlation at all.

In this study, the value of r2 for each regression equation is a measure of the
predictive value of the performance model. It is also of interest to measure the
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DATA GRID->RLE GRIO->POLY RLE->GRIO RLE->POLY POLY->GRIO POLY->RLE

SI A 21.720 29.360 3.240 7.580 11.300 7.960
2 28 21.820 53.900 3.960 32.060 32.773 28.780
3 3R1 21.880 67.720 5.600 45.940 52.460 47.080
4 48 21.940 112.660 6.620 90.780 96.000 89.760

5 5R 21.980 186.820 13.480 164.700 172.120 160.080
6 6R 22.040 359.860 34.780 339.080 342.400 312.920
7 7R 22.160 498.240 45.320 472.360 484.640 446.660

Table 4-10: Update (Conversion) Algorithm Processing Times

difference between the values of r 2 achieved by performing the regression with either
the representation complexity or the inherent data complexity on the X axis. If the
difference in r2 is small then both complexity measures will have similar predictive
value. The expectation is that representation complexity will be a better predictor
of performance that inherent data complexity as it is directly tied to the analytic
complexity of the algor;thm.

To actually compute the regression equations, a software package called
"STATVIEW II" was used. This analytical and graphical program from ABACUS
Systems, Inc. runs on the Apple MAC II. A table was initialized for each algorithm,
in which the various time measurements for each dataset or dataset pair were entered,
as well as the corresponding inherent data and representation complexities.

The minimum processing time for each dataset input into a specific algorithm was
then selected as the y-coordinate, and each complexity measure as the x-coordinate
of separate graphs. When computing the regression equations, the already known
analytic complexity of the algorithms provides a starting point for the analysis. The
analytic complexity bounds the algorithm's behavior - whether it is linear or polyno-
mial for example.

In the tests that follow, the graphs of time versus both complexity measures are
presented side by side. The r 2 values are presented, as is the difference Ar 2 between
the r 2 for the performance model generated using representation complexity and the
the one generated using inherent data complexity.

4.5.2 Update Algorithm Performance

The test results for the matrix of update algorithms applied to the test data are
summarized in Table 4-10. In the following sections these results will be graphed to
show the relationship between processing time and the two data complexity measures;
representation complexity, and inherent data complexity. The curves generated by
performing regression analysis on the data will be displayed, and the error in how
well these curves match the data will be analyzed.
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Figure 4-8: Grid to RLE Processing Time vs Complexity
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Figure 4-9: Grid to Polygon Processing Time vs Complexity

4.5.2.1 Grid to RLE

Figure 4-8 shows two graphs of processing time (in seconds) against the two
different complexity measures; representation complexity on the left and inherent
data complexity on the right. The correlation values and the difference between
them are:

" correlation using representation complexity: r2 = 0.789,

" correlation using inherent data complexity: r2 - 0.759,

" difference of correlations Ar 2 = 0.030.

4.5.2.2 Grid to Polygon

Figure 4-9 shows two graphs of processing time (in seconds) against the two
different complexity measures; representation complexity on the left and inherent
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Figure 4-10: RLE to Grid Processing Time vs Complexity

data complexity on the right. The correlation values and the difference between
them are:

* correlation using representation complexity: r2  0.986,

* correlation using inherent data complexity: r2 
2 0.940,

e difference of correlations Ar 2 = 0.046.

4.5.2.3 RLE to Grid

Figure 4-10 shows two graphs of processing time (in seconds) against the two
different complexity measures; representation complexity on the left and inherent
data complexity on the right. The correlation values and the difference between
them are:

* correlation using representation complexity: r 2 = 0.982,

* correlation using inherent data complexity: r 2 = 0.931,

* difference of correlations Ar 2 - 0.051.

4.5.2.4 RLE to Polygon

Figure 4-11 shows two graphs of processing time (in seconds) against the two
different complexity measures; representation complexity on the left and inherent
data complexity on the right. The correlation values and the difference between
them are:

* correlation using representation complexity: r 2 = 0.998,

* correlation using inherent data complexity: r2 = 0.937,

e difference of correlations Ar 2 = 0.061.
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H Figure 4-11: RLE to Polygon Processing Time vs Complexity
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Figure 4-12: Polygon to Grid Processing Time vs Complexity

4.5.2.5 Polygon to Grid

Figure 4-12 shows two graphs of processing time (in seconds) against the two
different complexity measures; representation complexity on the left and inherent
data com, -xity on the right. The correlation values and the difference between
them are:

* correlation using representation complexity: r 2 = 0.999,

* correlation using inherent data complexity: r 2 = 0.941,

* difference of correlations Ar2 = 0.058.

4.5.2.8 Polygon to RLE

Figure 4-13 shows two graphs of processing time (in seconds) against the two
different complexity measures; representation complexity on the left and inherent
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Figure 4-13: Polygon to RLE Processing Time vs Complexity

Method Performance Model Correlation
Grid To RLE y = .001x + 21.85 A = 759
Grid To Polygon y = 1.231x + 72.218 r2 = .94
RLE To Grid y = .117x + 5.247 r' = .931
RLE To Polygon y = 1.222x + 50.777 r2 = .937
Polygon To Grid y = 1.242x + 54.57 r2 = .941
Polygon To RLE y = 1.145: + 49.475 r2 = .94

Table 4-11: Performance Models for Update Algorithms

data complexity on the right. The correlation values and the difference between
them are:

* correlation using representation complexity: r = 1.000,

* correlation using inherent data complexity: r 0.940,

9 difference of correlations Ar 2 - 0.060.

4.5.2.7 Summary of Performance Models

The regression equations gnerated above are summarized in Table 4-11. The re-
gression equations for the update algorithms have high correlation coefficients when
using both repiesentation and inherent data complexity. This means that perfor-
mance models based on these equations will have a strong predictive value.

Also, the difference between the values of r2 for tne two complexity measures is
never more then 0.06. This means that performance models generated using inherent
data complexity are nearly as predictive as models generated using representation
complexity.
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I

ORTA INHERENT C GRIO C GRIO T RLE C RLE T POLY C POLY T

I IRIS .584 .700 85.520 13.993 .280 9.200 58.080
2 2R,31 11.910 6.945 83.620 56.288 .440 49.200 69.600
3 4R,31 29.338 12.471 85.820 100.694 .600 88.700 195.320
4 5R,31 79.565 26.005 86.800 155.681 .720 131.700 215.140
5 6R,31 179.007 70.361 90.020 270.706 .920 220.900 582.780
6 4R,61 190.443 72.504 85.820 300.413 1.220 249.000 1665.400
7 5R,61 240.670 86.038 86.800 355.400 1.760 292.000 3783.000
8 7R,31 387.826 91.989 91.440 389.490 1.020 299.400 0
9 7R,61 548.931 152.022 91.560 589.210 3.560 459.700 13225.580

I
Table 4-12: Intersection Processing Times for Grids, RLE's and

* Polygons
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I Figure 4-14: Grid Intersection Processing Time vs Complexity

4.5.3 Processing Algorithm Performance

4.5.3.1 Intersection

The test results for the intersection algorithms for the different representations
applied to the test data are summarized in Table 4-12. The columns of the table con-
tain the combined complexity of the input (for example GRID C) and the processing
time for the algorithm in seconds (for example RLE T).

Figure 4-14 shows two graphs of grid intersection processing time (in seconds)
against the two different complexity measures; representation complexity on the left
and inherent data complexity on the right. The correlation values and the difference
between them are:

* correlation using representation complexity: r2 = 0.648,
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Figure 4-15: RLE Intersection Processing Time va Complexity

9 correlation using inherent data complexity: r 2 = 0.728,

* difference of correlations Ar 2 = -0.08.

The value for Ar 2 in this case is interesting because it indicates that inherent data
complexity was a better predictor of processing time than was the representation
complexity.

Figure 4-15 shows two graphs of RLE intersection processing time (in seconds)
against the two different complexity measures; representation complexity on the left
and inherent data complexity on the fight. The correlation values and the difference
between them are:

* correlation using representation complexity: r2 = 0.808,

* correlation using inherent data complexity: r2 = 0.766,

* difference of correlations Ar 2 = 0.042.

Figure 4-16 shows two graphs of polygon intersection processing time (in seconds)
against the two different complexity measures; representation complexity on the left
and inherent data complexity on the right. The correlation values and the difference
between them are:

* correlation using representation complexity: r2 = 0.991,

correlation using inherent data complexity: r2 = 0.985,

* difference of correlations Ar 2 = 0.006.

4.5.3.2 Union

The test results for the union algorithms for the different representations applied
to the test data are summarized in Table 4-13.
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RTDRT INHERENT C GRID C GRID T RLE C 74' POLY C POLY T

1 IRi S .584 .700 103.880 13.993 .300 9.200 59.720
2 2R,31 11.910 6.945 101.680 56.288 .600 49.200 99.420
3 4R,31 29.338 12.471 101.880 100.694 .980 88.700 254.740

4 5R,31 79.565 26.005 102.260 155.681 1.180 131.700 345.980.
5 6R,31 179.007 70.361 99.220 270.706 1.640 220.900 791.380
6 4R,61 190.443 72.504 103.200 300.413 2.540 249.000 1974.280
7 5R,61 240.670 86.038 102.280 355.400 3.620 292.000 4379.880

8 7R,31 387.826 91.989 97.640 389.490 2.140 299.400 *__
9 7R,61 548.931 152.022 97.600 589.210 6.020 459.700 11256.940

Table 4-13: Union Processing Times for Grids, RLE's and Polygons
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Figure 4-17: Grid Union Processing Time vs Complexity

4-35



2y 25X .OOh-138, r2 .76 y N .009Z * .51, r2 .804
25 25

20 20

5 5
0 0
0Ui0 W

0ujloo

Lij SI 0
00 00

0100200 300 400 500 600 700 -1000 100 200 300 400500 600
SUM RLE REPRESENT COMPLEX (n/10) SUM INHERENT DATA COMPLEXITY

IFigure 4-18: RLE Union Processing Time vs Complexity

*Figure 4-17 shows two graphs of grid union processing time (in seconds) against
the two different complexity measures; representation complexity on the left and
inherent data complexity on the right. The correlation values and the difference
between them are:

o correlation using representation complexity: r' - 0.509,

* correlation using inherent data complexity: r 2 = 0.626,

* difference of correlations Ar2 = -0.117.

Once again inherent data complexity was a better predictor of algorithm performance.
These results indicate that for grid union and intersection, some other property of the
representation, in addition to the one measured, is affecting algorithm performance.
This is likely due the use of a weak property of grids as the measure of representation
complexity. We have used the number of grid cells in the region as the complexity
measure, when, in fact, the time for grid union is roughly constant for grids of the
same size.

Figure 4-18 shows two graphs of RLE union processing time (in seconds) against
the two different complexity measures; representation complexity on the left and
inherent data complexity on the right. The correlation values and the difference
between them are:

* correlation using representation complexity: r2 
- 0.876,

* correlation using inherent data complexity: r2 
- 0.804,

e difference of correlations Ar 2 = 0.072.

Figure 4-19 shows two graphs of polygon union processing time (in seconds)
against the two different complexity measures; representation complexity on the left
and inherent data complexity on the right. The correlation values and the difference
between them are:
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I Figure 4-19: Polygon Union Processing Time vs Complexity

DATR INHERENT C GRIO C GRIO T RLEC RLE T POLY C POLY T

I IR .292 .350 87.600 6.997 .140 4.600 .200
2 2R 2.959 1.781 87.440 20.795 .220 18.900 .280

R 8.951 5.164 87.320 35.494 .260 30.300 .320
4 4R 20.387 7.307 87.360 65.200 .380 58.400 .400
5 SR 70.614 20.841 87.480 120.187 .520 101.400 .520
6 6R 170.056 65:197 87.340 255.215 .860 190.600 .680

171 7A 378.8751 86.8251 87.240 1353.997, 1.180 1269.100 1 1.140

Table 4-14: Negation Processing Times for Grids, RLE's and
H Polygons

H * correlation using representation complexity: 2 0.985,

correlation using inherent data complexity: r2 - 0.968,

difference of correlations Ar 2 = 0.017.

H 4.5.3.3 Negation

The test results for the negation algorithms for the different representationsH applied to the test data are summarized in Table 4-14.
Figure 4-20 shows two graphs of grid negation processing time (in seconds)

against the two different complexity measures; representation complexity on the left
and inherent data complexity on the right. The correlation values and the difference
between them are:
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Figure 4-21: RLE Negation Processing Time vs Complexity

i correlation using representation complexity: r2 0.421,

* correlation using inherent data complexity: r2 = 0.419,

I * difference of correlations Ar 2 = 0.003.

Figure 4-21 shows two graphs of rle negation processing time (in seconds) against

I the two different complexity measures; representation complexity on the left and

inherent data complexity on the right. The correlation values and the difference

I Ibetween them are:

* correlation using representation complexity: r2 = 0.997,

* correlation using inherent data complexity: r2 = 0.935,

* difference of correlations Ar 2 = 0.062.

!1 Figure 4-22 shows two graphs of polygon negation processing time (in seconds)

against the two different complexity measures; representation complexity on the left

I 4-38

II



Uy a.003x *.99, r2 z.961 5y *.002x + .294, r'2 .972

4.5 4.5

4 4

~3.5 3.5z Z

C,, . U 2.

~ .5 1.5

0 50LGO 10 5 0 20300 100 150 200 250 300 350 400

POYOIERSN OPEIY(V )IHRN AACMLXT
I Figure 4-22: Polygon Negation Processing Time vs Complexity

DATA INHERENT C GRID C GRID T RILEC IBLE T POLY C POLY T

--I IAR .292 .350 35.400 6.997 .340 4.600 1.500
2 28 2.959 1.781 38.920 20.795 1.880 18.900 4.980
31 '4 8.951 5.164 47.320 35.494 5.340 30.3001 7.040
4 48 20.387 7.307 52.680 65.200 11.660 58.400 14.200
5 SR 70.614 20.841 86.080 120.187 26.400 101.400 22.620
6 i6B 170,056 1 65.197 196,360 235.213 55.140 190.600 133.460

7 78 378.8751 86.825 1249.040,353.997, 90.240 269.100 52.700,

Table 4-15: Enveloping Processing Times for Grids, RLE's and
* Polygons

and inherent data compleity on the right. The correlation values and the differenceI between them are:

*correlation using representation complexity: r' 0.961,

*correlation using inherent data complexity: r 2 
-0.972,

*difference of correlations Zr 2 = -0.011.

4.5.3.4 Enveloping

The test results for the enveloping algorithms for the different representations
applied to the test data are summarized in Table 4-15.

Figure 4-23 shows two graphs of grid enveloping processing time (in seconds)
against the two different complexity measures; representation complexity on the left
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Figure 4-23: Grid Enveloping Processing Time vs Inherent Data
Complexity

and inherent data complexity on the right. The correlation values and the difference
between them are:

e correlation using representation complexity: r 2 = 1.000,

* correlation using inherent data complexity: r2 = 0.929,

I difference of correlatior"z Ar2 = 0.071.

Figure 4-24 shows two graphs of RLE enveloping processing time (in seconds)
against the two different complexity measures; representation complexity on the left
and inherent data complexity on the right. The correlation values and the differeLce

* between them are:

* correlation using representation complexity: r2 = 0.997,

* correlation using inherent data complexity: r2 = 0.973,

e difference of correlations Ar 2 = 0.024.

Figure 4-25 shows two graphs of polygon enveloping processing time (in seconds)
against the two different complexity measures; representation complexity on the left
and inherent data complexity on the right. The correlation values and the difference
between them are:

9 correlation using representation complexity: r' = 0.989,

* correlation using inherent data complexity: r 2 = 0.936,

I * difference of correlations Ar 2 = 0.053.
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Figure 4-24: RLE Enveloping Processing Time vs Inherent Data

Complexity
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Method Performance Model Correlation
Grid Intersect y = .013z + 85.081 r2 = .728
RLE Intersect y = .005z + .296 r2 = .766
Polygon Intersect y = -28.7 + 1.608x + .041x 2 r2 = .985

Table 4-16: Performance Models of Intersection Algorithms for
Grids, RLE, and Polygons

Method Performance Model Correlation
Grid Union y = -. Olx + 102.913 r 2 

= .626
RLE Union y = .009X + .51 r 2 = .804
Polygon Union y = -108.299 + 7.128z + .025z 2 r 2 = .968

Table 4-17: Performance Models of Union Algorithms for Grids,
RLE, and Polygons

4.5.3.5 Summary of Performance Models

Tables 4-16--4-19 summarize the regression equations generated in the above
tests. An analysis of the Ar 2 values shows that inherent data complexity is roughly
equivalent to representation complexity in predictive value.

4.6 Analysis of Performance Study

The above study provides an answer to the questions posed in Section 2.3. The
results indicate that:

* It is possible to define inherent data complexity for regions,

* The complexity measure correlates well with representation complexity,

* Performance models generated using the complexity measure are nearly as good
as those generated using representation complexity.

From these results we specify a methodology for generating performance models:

1. define and implement algorithm.

Method Performance Model Correlation
Grid Negate y = -. 001z + 87.449 r' = .419
RLE Negate y = .003z + .263 r2 = .935
Polygon Negate y = .002z + .294 r 2 = .972

Table 4-18: Performance Models of NegatioD Algorithms for Grids,
RLE, and Polygons

4-42



I

Method Performance Model Correlation
Grid Envelope y = .595z + 45.429 r2 = .929
RLE Envelope Y = .238z + 5.086 r2 = .973
Polygon Envelope y = .127x + 7.652 r 2 = .936

Table 4-19: Performance Models of Enveloping Algorithms for
Grids, RLE, and Polygons

2. analyze complexity of algorithm,

3. select test data for algorithm,

4. compute inherent complexity of test data,

5. run tests of algorithm in a baselined testbed environment,

6. perform a regression of processing time against inherent data complexity.

The following chapter will explore how the resulting performance models and the
data complexity measure can become part of a testbed for spatial data processing.
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5. Design of a Future Testbed

5.1 Purpose

The performance study of the previous chapter provides the basis for a terrain
reasoning testbed. Such a testbed would:

* provide an infrastructure for terrain analysis applications,

* hide the details of spatial representations and relations,

* automatically optimize spatial operations,

* provide an environment for experimentation and development of spatial opera-
tions.

By distinguishing spatial semantics from internal representation, the testbed frees
the users from the computer science details, and allows them to concentrate on rep-
resenting domain knowledge.

5.2 Key Concepts

The primitive elements of the testbed are:

* representation,

* generic region,

* algorithm,

* method,

* generic method,

* plan.

Each of these testbed components, which are described below, are objects in an object-
oriented paradigm.

Representation simply refers to the particular representation of spatial data; for
example grid, RLE and polygon. A given dataset can be instantiated in any or all
of these representations, and conversions exist from one representation to another.
Within the testbed, the representation of a region is a computer science level detail
which is hidden from the user.

Instead of talking about particular representations, the user talks about generic
regions. The purpose of the testbed is to allow the user to perform some spatial
operation on generic regions of possibly different representations without having to
know about the representations or algorithms used. Currently, only g'i.,eric regions
are defined, but other spatial objects like curves or volumes could be similarly defined.
A generic region is defined as follows:
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I;;

;;; Generic Region Object
;;;

(defclass generic-region 0
(:external
:grid

l :rle
:polygon

:complexity))

A generic region represents a particular region in one or more ways. It may have some
external definition in a file, or it may have one or more instantiated representations of
the region. The complexity of the region object is also stored with the generic region;
this is computed using the inherent data complexity measure defined in Chapter 4.
Each of these properties of a generic region can be computed on an as-needed basis.fl New representations can be easily added to expand the definition of a generic region.

Algorithms are simply pieces of software which compute some spatial operation
given input in some particular representation. The testbed is designed to isolate the
user from having to know what representations are instantiated, and what algorithms
apply to those representations. The algorithms available in the testbed are described
in Chapter 3. New algorithms are easily added, and may be coded in Lisp or C.

A method is more abstract than an algorithm but is still dependent on the input
representations. Methods capture information about a particular algorithm and make
that available for higher level processes. A method is defined as follows:

;;;

;;; Spatial Method Definition

(defclass method 0
: input-types
: performance-model
:output-type
:output-complexity-estimation

:algorithm)

A method takes generic regions as input. The method specifies which of the repre-Ia sentations of the generic region are required for the algorithm as well as the resultant
output representation. The performance model for the algorithm (see previous Chap-
ter) is stored with the method. This is a function which, when applied to the input
data, estimates the cost of executing the algorithm for the given input data.. In the
future it would be desirable to have a function which would estimate the complexity
of the output from the complexities of the input. When a method is called with
generic regions as input, it returns a list of the following:

e ethe required input types,

* the estimated cost for running the algorithm on the data,

I 5-2
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Figure 5-1: Example Plan

" a Lisp expression which, when evaluated, will apply the function to the data,

" the output type,

" the estimated output complexity (if available).

The generic method is the highest level of data abstraction. It defines a represen-

tation independent spatial operation; for example, enveloping. The generic method

essentially contains a list of methods defined above. When a generic method is called

with generic regions as input, it calls all appropriate methods and returns the list

of results. This result contains all the information about how the operation could

be computed and at what cost. What has not been taken into account is that the

generic regions may not have all possible representations instantiated. Hence the

computation of some of the methods returned by the generic method will require

update operations to be performed on the generic region to instantiate those repre-

sentations specified as required input types. This is the level at which planning takes

place.

A plan is a sequence of one or more methods which takes the specified input

generic regions and produces a generic region with a specific instantiated represen-

tation in an optimal way (Figure 5-1). The planner takes as inputs: input generic

regions, a sequence of one or more generic methods to be performed, and a desired

output type. Each generic method is expanded as described above. Conceptually,

a graph is then built with arcs from the input to the output through nodes cor-

responding to each of these method expansions. Additional nodes are introduced

between method nodes to account for data conversion if the output of one function

does not match the input of the next. The path with the minimum total estimated

cost, including the cost of dAta conversion, is chosen as the plan for implementing
the sequence of generic methods.
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Name Inherent Data Complexity Representation
3B 9.846 Polygon
5B 97.827 Grid

Table 5-1: Example Regions

Spolygon grid

grid ,.Igrid to
unionpolygon

grid

Figure 5-2: Plan 1: Polygon Union

For example, assume that a terrain analyst has the two regions in the following
shown in Table 5.2. The analyst's goal is to find the union of 3B and 5B in polygonal
form, and to do so in the least amount of time. Given the representations and
algorithms developed in this study, the analyst has two obvious solutions. One is
to convert 3B from polygon to grid, perform a grid union, and convert the answer
to polygonal form (Figure 5-2). The second is to convert 5B from grid to polygon,
and perform a polygon union operation (Figure 5-3). There is, however, a third, less
obvious solution: convert 3B and 5B to RLE, use RLE union, and convert the result
to polygon (Figure 5-4).

An automatic planner could now use the performance models for these algo-
rithms, and the complexity of the data to evaluate each of the plans and choose the
best. There is a problem, however, in computing the cost of plans 1 and 3. We
currently have no way to estimate the complexity of the output of an algorithm from
the complexity of the input. What is needed, in addition to the performance model

Figure 5-3: Plan 2: Polygon Union
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re = rle to
union- polygon

Figure 5-4: Plan 3: RLE Union

Plan Initial Conversions Union Operation Output Conversion Total Time
Plan 1 66.789 101.836 204.763 373.397
Plan 2 192.643 948.942 0.0 1141.585
Plan 3 183.345 1.479 182.353 367.177

Table 5-2: Plan Processing Times

for each algorithm, is a function which estimates the complexity of the output from
the complexity of the input. This is an area for future study. The alternatives are
either to test the complexity of the output (which is time consuming) or to make
conservative assumptions about the expected output. For example, in the case of
union, we can assume that the complexity of the output will be less than or equal to
the sum of the complexities of the inputs.

Using this assumption completes the cost prediction of each of the plans. The
Table 5.2 shows the predicted costs (in seconds) for each stage of the plans, as well
as the total cost of the plan: This table indicates that plan 3, in which both objects
were converted to RLE's, has the lowest predicted cost even though it involves the
greatest number of conversion operations. Plan 3 is, in fact, much better than plan
1 which involves the fewest number of conversions. This clearly illustrates the value
of performance models and data complexity measures in the optimization of spatial
operations. A human analyst might choose an obvious, but non-optimal, solution to
a problem. With the aid of an automated planner, more informed predictions can be
made, and more possible plans examined.

5.3 Initial Design

Figure 5-5 shows the functional architecture of the testbed which supports the
planning operation. The dataset object manager maintains the instantiated generic
regions. The method object manager similarly maintains the methods and generic
methods which make use of an algorithm library. The plan object manager is respon-
sible for the planning process. This involves expanding the generic methods and using
update methods to meet the constraints imposed by the input data requirements of
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I Figure 5-5: Functional Architecture

the various algorithms. This functional component also selects the best path, which
becomes the plan which is executed by the performance monitor. The performance
monitor can optionally evaluate the performance of the plan or subportions of it.

The current version of the testbed was assembled on the hardware architecture
shown in Figure 5-6. The software architecture of the testbed is illustrated in Figure 5-
7. The testbed software was rapidly prototyped to aid the testbed design process. TheUI specification of the user interface helps to clarify the functionality of the testbed and
the way in which users would interact with it. The initial user interface is described
below.

The testbed interface is graphically oriented. One window is used for the display
of region data, another for the display of performance statistics, and another for
the graphical interaction with instantiated objects like generic regions, methods, and
plans. Mouse sensitive buttons allow many functions to be performed by clicking on
the screen.

Il The user gets data into the system by loading a dataset from file (Figure 5-8).
This is done by clicking the mouse on the "Load Dataset" button and selecting one
of the available datasets. When a dataset is instantiated, a generic region object is
created (with no instantiated representations) and added to the dataset window.

These objects in the dataset window are mouse sensitive (Figure 5-9). Clicking
the mouse on one of these objects produces a menu of possible operations that can
be performed on that object.

The representations of a generic region can be instantiated (Figure 5-10) by click-
ing on the "Representation" button and then selecting a region object. The currently
instantiated representations for a generic region are displayed in the generic region
object. Representations can also be instantiated by usig the update algorithms
(Figure 5-11).

Generic methods are also objects which can be instantiated (Figure 5-12). As an
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experimentation tool the actual algorithms that make up a generic method may be
chosen (Figure 5-13). This allows experimentation with results of planning given a
restricted set of processing algorithms.

Plans are also objects (Figure 5-14) with specific inputs and a sequence of generic
methods. An interactive plan builder would allow the user to graphically design a
spatial operation by selecting methods like building blocks and connecting their inputs
and outputs together. Such a facility has not been built.

After a plan has been executed, a new output object is generated and statistics
can be calculated (Figure 5-15).

Another useful user interface feature of the testbed is the graphical databast
browser (Figure 5-16) This facility allows the user to examine many datasets at once.
The datasets, which may be in memory or stored on a disk, can then be selected for
further processing.

The complete design and implementation of the testbed is beyond the scope of
this phase of the project. However, the preliminary design described above demon-
strates the relationships among the fundamental concepts and substantiates the via-
bility and value of the eventual testbed.
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*6. Conclusions

6.1 Summary of StudyI
The Phase II research began with the selection, implementation and evaluation

of common terrain representations and operations. Data was chosen for experimen-
tation, and the problem of expressing the complexity of data was researched. An
inherent data complexity measure was defined, and tested on the chosen data. A test
environment was built, and the algorithms were evaluation within this framework.
The resilts of the tests were used to generate performance models based on both
representation complexity and data complexity. The performance models were eval-
uated with respect to there predictive value. Using the notions of data complexity
and performance modeling, an initial spatial analysis testbed design was proposed.

6.1.1 Resolved Issues

The major results of this Phase II research are:

e the object-oriented implementation of common terrain represcntations and spa-
tial eperations,

* the design of an effective inherent data complexity measure,

* the definition of representation independent performance modeling,

1 * the specification of a methodology for generating performance models of algo-
rithms,

I * the initial design for a spatial reasoning testbed using generic regions, generic
methods, and plans,

I * the definition of spatial operation optimization using performance models.

6.1.2 Unresolved Issues

The following are questions suggested by the Phase II study, and which are
currently unanswered:

* What is computational expense of calculating inherent data complexity, and is
* the cost prohibitive in a run-time environment?

* What is the validity of the performance models in practice?

How can the complexity of algorithm output be estimated from algorithm input?

o Can inherent data complexity be computed by a statistical sampling of the
dataset?
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6.2 Recommendations

This study provides the foundation for spatial reasoning testbed. The existence
of such a testbed would have great value to terrain analysts and computer scientists
working on automating terrain analysis or robot navigation.

To realize such a testbed, the following tasks are proposed:

* complete the testbed design,

* complete the implementation of a prototype testbed,

e given the current set of representations and algorithms, answer the unresolved
issues within the testbed environment,

* expand the available set of representations and algorithms in the testbed using
the methodology outlined in this research,

o evaluate the performance of the testbed.

6-2



U
B 7. Appendix A: Data Sets

The following pages contain the region data, extracted from a CATTS database,

used for testing and evaluating data structures and algorithms.
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Figure 7-: Dataset 2A.
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Figure 7-3: Dataset 3A.

- !-ip

Figure 7-4: Dataset 4A.
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Figure 7-5: Dataset 5A.
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Figure 7-6: Dataset 6A.
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Figure 7-7: Dataset 7A.
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Figure 8-1: Intersection of Datasets lA and 1S
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Figure 8-2: Union of Datasets lA and 1S
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Figure 8-7: Intersection of Datasets SA and 31

A 1A

I I

I dlk
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Figure 8-13: Intersection of Datasets 5A and 61
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Figure 8-14: Union of Datasets 5A and 61
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Figure 8-15: Intersection of Datasets 7A and 31

mo

*" . -0,4 --- - ---- 1
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